
TEST REPORT #204690

VITA 46 CONNECTOR/MODULE QUALIFICATION TEST

Heorge JI Olean

APPROVED BY: George G. Olear II DIRECTOR OF MECHANICAL/ENVIRONMENTAL TESTING CONTECH RESEARCH, INC.

CERTIFICATION

This is to certify that the evaluation described herein was designed and executed by personnel of Contech Research, Inc. It was performed in concurrence with Curtiss-Wright Controls Embedded Computing, of Kanata, Ontario, Canada who was the primary test sponsor. Other sponsors were Mercury Computer Systems and Radstone Embedded Computing.

All equipment and measuring instruments used during testing were calibrated and traceable to NIST according to ISO 10012-1 and ANSI/NCSL Z540-1, as applicable.

All data, raw and summarized, analysis and conclusions presented herein are the property of the test sponsors. No copy of this report, except in full, shall be forwarded to any agency, customer, etc., without the written approval of the test sponsors and Contech Research.

Heorge Ji Okan

George G. Olear II Director of Mechanical/Environmental Testing Contech Research, Inc.

GGO:

REVISION HISTORY

DATE	REV. NO.	DESCRIPTION	ENG.
10-26-05	Rev. 1.0	Initial Issue	ggo
11-14-05	Rev 1.1	Added G85 Test results	ggo
12-21-05	Rev 1.2	Added table of contents, figure numbers, test vehicle details, and test result details.	is/gg o
8-10-06	Rev 1.3	Added photos of vibration fixture, LLCR position ID's, and Conclusions.	is
11-13-06	Rev 1.4	Added Introduction to random vibration section (Group A), added Discussion to HALT random vibration results, and clarified Purpose of HALT vibration.	is

Table of Contents

CERTIFICATION
SCOPE
APPLICABLE DOCUMENTS
TEST SAMPLES AND PREPARATION
TEST SELECTION
SUMMARY OF TEST RESULTS
GROUP A TESTING (Shock & Vibration Qualification and HALT) 13
SINE VIBRATION RESULTS:
SHOCK RESULTS:
RANDOM VIBRATION QUAL. RESULTS:
RANDOM VIBRATION HALT RESULTS/DISCUSSION:
GROUP B TESTING (Bench Handling & Vibration over Temperature) 57
BENCH HANDLING RESULTS: 63
VIBRATION OVER TEMP. RESULTS: 65
GROUP C TESTING (Humidity) 69
RESULTS:
GROUP D TESTING (Salt Fog)77
RESULTS:
DISCUSSION:
GROUP D-1 TESTING (Salt Fog and SO_2)
RESULTS:
GROUP E TESTING (Sand & Dust)
DUST RESULTS:
SAND RESULTS: 100
GROUP F TESTING (Durability & ESD)
DURABILITY RESULTS: 108
ESD RESULTS: 111
GROUP G TESTING (Current Overload)116
RESULTS:
CONCLUSIONS

SCOPE

To perform qualification testing of the VITA 46 Connector Set as manufactured and submitted by the test sponsor, Curtiss-Wright Controls Embedded Computing.

APPLICABLE DOCUMENTS

Unless otherwise specified, the following documents of issue in effect at the time of testing form a part of this report to the extent as specified herein. The requirements of sub-tier specifications and/or standards apply only when specifically referenced in this report.

Test Specifications:

VITA 46 Connector/Module Test Plan, rev. 6 (January, 2005)

MIL-STD-1344A, Test Methods for Electrical Connectors

MIL-STD-810F, Environmental Engineering Considerations and Laboratory Tests

EIA-364, Electrical Connector Test Procedures

EN-61000-4-2, Electrostatic Discharge Immunity Test

ASTM G-85, Standard Practice for Modified Salt Spray Testing

TEST SAMPLES AND PREPARATION

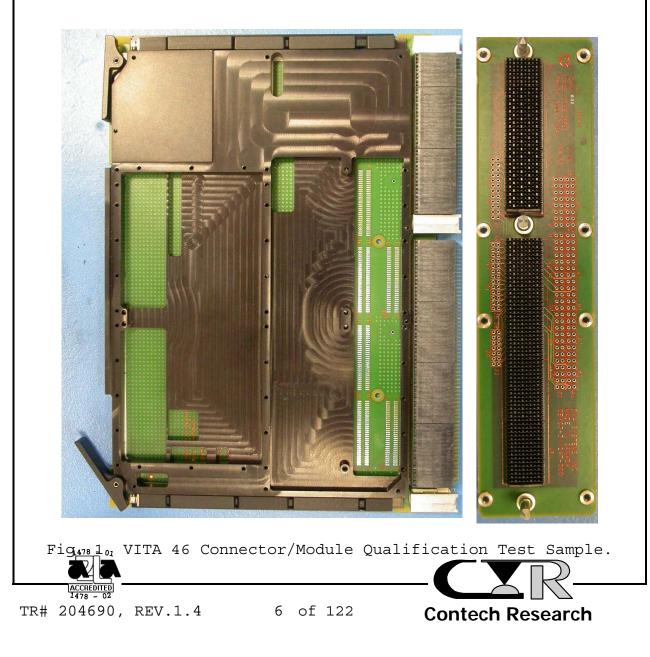
The following test samples were submitted by the test sponsor, Curtiss-Wright Controls Embedded Computing, for the evaluation to be performed by Contech Research, Inc.

- (1) Qty. 8 VITA 46 Modules, compliant with IEEE 1101.2 6U form factor (see Fig. 1 below). Connectors: Tyco MultiGig RT-2, 7-row, 30 microinch (nominal) gold contacts. Alignment modules: Tyco 1-1469492 (silver over nickel over copper finish)
- (2) Qty. 8 VITA 46 single slot backplanes (see Fig. 1 below), 0.15" thick. Connectors: Tyco MultiGig RT-2, 50 microinch (nominal) gold contacts. Alignment posts: Tyco 1-1469491 (silver over nickel over copper finish)

The following additional materials were submitted by the test sponsor to assist and perform the testing of items listed above. $\frac{1478-01}{2}$

- (1)
- Accretion Test Fixture (see Fig. 2)

TR# 204690, REV.1.4


5 of 122

The test samples as submitted were certified by the manufacturer as being fabricated and assembled utilizing normal production techniques common for this type of product and inspected in accordance with the quality criteria as established for the product involved.

Connector test samples were supplied assembled and terminated to test boards by the test sponsor.

All test samples were coded and identified by Curtiss-Wright Controls Embedded Computing to maintain continuity throughout the test sequences. Upon initiating testing, mated test samples remained with each other throughout the test sequences for which they were designated.

The test samples were tested in their 'as received' condition.

TEST SELECTION

All tests were performed in accordance with the applicable sequences and procedures as specified in the VITA 46 Test Plan document, dated Jan. 4, 2005.

The following test sequences were established for this program (note: LLCR = low level contact resistance measurement, DWV = dielectric withstanding voltage, SG = safety ground resistance measurement):

Gro	up A	Group B	Group C
Sample 026	mple 026 Sample 023 Sample 027		Sample 024
Resonance	Resonance	ance LLCR/DWV/SG LLCR/DWV/S	
LLCR/DWV/SG	LLCR/DWV/SG	Bench Handling	Temp/Humidity
Shock	Shock	Vibration @	LLCR/DWV/SG
		Temp	
LLCR/DWV/SG	LLCR/DWV/SG	LLCR/DWV/SG	
Random	HALT Random		
LLCR/DWV/SG	LLCR/DWV/SG		

TEST SELECTION - Continued

Group D	Group E	Group F	Group G
Sample 035	Sample 030	Sample 017	
			LLCR/DWV/SG
LLCR/DWV/SG	LLCR/DWV/SG	LLCR/DWV/SG	
			Overload
Salt Fog	Dust	ESD	
			LLCR/DWV/SG
LLCR/DWV/SG	LLCR/DWV/SG	Mate/ Unmate	
	Sand	Durability 200	
	LLCR/DWV/SG	Mate\ Unmate	
		LLCR/DWV/SG	
		ESD	
		Mate/ Unmate	
		Durability 300	
		Mate\ Unmate	
		LLCR/DWV/SG	
		ESD	

1478 - 01

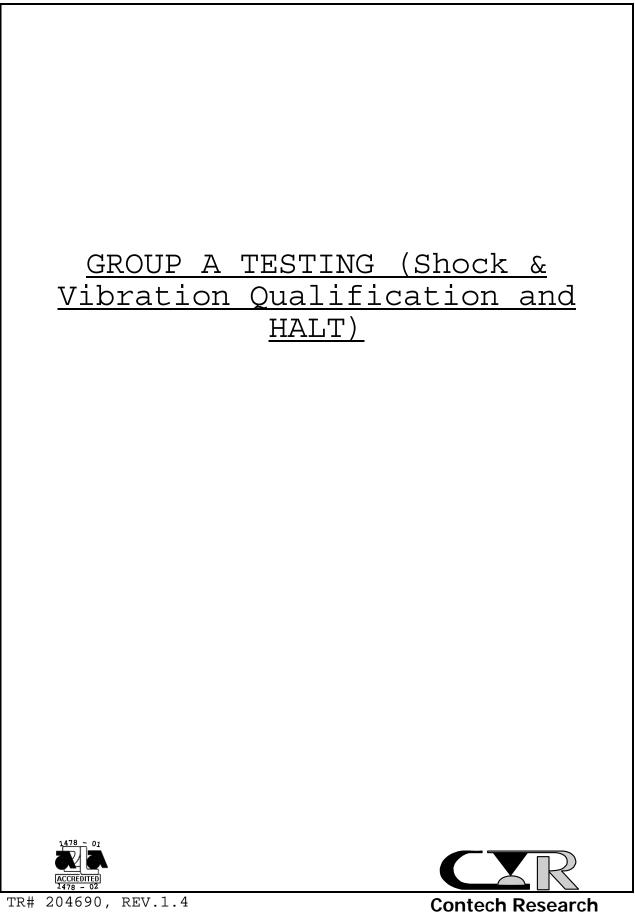
TR# 204690, REV.1.4 9 of 122

-CIR-Contech Research

iff. P1 ingle- nded P2 iff. P3 ingle- nded P4	P3 a1 - b1 P3 e2 - f2 P3 a3 - b3 P3 e4 - f4 P3 a5 - b5 P3 e6 - f6 P3 g1 - g3 P3 b10 - c10 P3 d11 - e11 P3 b12 - c12 P3 d13 - e13	LLCR P2 f11, g11 P2 a12, b12 P2 f13, g13 P2 a14, b14 P2 f15, g15 P2 a16, b16 P2 d9, d10 P2 d13, d14 P3 d1, e1 P3 d1, e1 P3 b2, c2 P3 d3, e3 P3 b4, c4 P3 d5, e5 P3 b6, c6 P3 d7, e7 P3 g5, g7 P3 e10, f10 P3 e12, f12	LLCR Position ID 2, 34 3, 35 5, 37 38, 6 7, 39 8, 40 1, 33 4, 36 41, 9 10, 42 43, 11 12, 44 45, 13 14, 46 48, 16 15, 47 50, 18
ingle- P2 iff. P3 ingle- P4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P2 a12, b12 P2 f13, g13 P2 a14, b14 P2 f15, g15 P2 a16, b16 P2 d9, d10 P2 d13, d14 P3 d1, e1 P3 d2, c2 P3 d3, e3 P3 d5, e5 P3 d7, e7 P3 g5, g7 P3 a11, b11	3, 35 5, 37 38, 6 7, 39 8, 40 1, 33 4, 36 41, 9 10, 42 43, 11 12, 44 45, 13 14, 46 48, 16 15, 47 50, 18
ingle- P2 iff. P3 ingle- P4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P2 a12, b12 P2 f13, g13 P2 a14, b14 P2 f15, g15 P2 a16, b16 P2 d9, d10 P2 d13, d14 P3 d1, e1 P3 d2, c2 P3 d3, e3 P3 d5, e5 P3 d7, e7 P3 g5, g7 P3 a11, b11	3, 35 5, 37 38, 6 7, 39 8, 40 1, 33 4, 36 41, 9 10, 42 43, 11 12, 44 45, 13 14, 46 48, 16 15, 47 50, 18
nded P2 iff. P3 ingle- P4	P2 a13 - b13 P2 f14 - g14 P2 a15 - b15 P2 f16 - g16 P2 d11 - d12 P2 d15 - d16 P2 d15 - d16 P3 a1 - b1 P3 e2 - f2 P3 a3 b3 P3 e4 - f4 P3 a5 b5 P3 g1 - g3 P3 g1 - g3 P3 b10 - c10 P3 d11 - e11 P3 b12 - c12 P3 d13 - e13	P2 f13, g13 P2 a14, b14 P2 f15, g15 P2 a16, b16 P2 d9, d10 P2 d13, d14 P3 d1, e1 P3 d2, c2 P3 d3, e3 P3 d5, e5 P3 d7, e7 P3 g5, g7 P3 a11, b11	5, 37 38, 6 7, 39 8, 40 1, 33 4, 36 41, 9 10, 42 43, 11 12, 44 45, 13 14, 46 48, 16 15, 47 50, 18
iff. P3	P2 a15 b15 P2 f16 g16 P2 d11 d12 P2 d15 d16 P2 d15 d16 P3 a1 b1 P3 e2 f2 P3 a3 b3 P3 e4 f4 P3 a5 b5 P3 e6 f6 P3 g1 g3 P3 b10 c10 P3 d11 e11 P3 b12 c12 P3 d13 e13	P2 a14, b14 P2 f15, g15 P2 a16, b16 P2 d9, d10 P2 d13, d14 P3 d1, e1 P3 b2, c2 P3 d3, e3 P3 b4, c4 P3 d5, e5 P3 d7, e7 P3 g5, g7 P3 a11, b11	38, 6 7, 39 8, 40 1, 33 4, 36 41, 9 10, 42 43, 11 12, 44 45, 13 14, 46 48, 16 15, 47 50, 18
iff. P3	P2 f16 - g16 P2 d11 - d12 P2 d15 - d16 P3 a1 - b1 P3 e2 - f2 P3 a3 - b3 P3 e4 - f4 P3 a5 - b5 P3 e6 - f6 P3 g1 - g3 P3 b10 - c10 P3 d11 - e11 P3 b12 - c12 P3 d13 - e13	P2 a16, b16 P2 d9, d10 P2 d13, d14 P3 d1, e1 P3 d2, c2 P3 d3, e3 P3 d5, e5 P3 d7, e7 P3 g5, g7 P3 e10, f10 P3 a11, b11	8, 40 1, 33 4, 36 41, 9 10, 42 43, 11 12, 44 45, 13 14, 46 48, 16 15, 47 50, 18
iff. P3	P2 d11 - d12 P2 d15 - d16 P3 a1 - b1 P3 e2 - f2 P3 a3 - b3 P3 e4 - f4 P3 a5 - b5 P3 e6 - f6 P3 a7 - b7 P3 g1 - g3 P3 b10 - c10 P3 d11 - e11 P3 b12 - c12 P3 d13 - e13	P2 d9, d10 P2 d13, d14 P3 d1, e1 P3 d2, c2 P3 d3, e3 P3 b4, c4 P3 d5, e5 P3 d7, e7 P3 g5, g7 P3 e10, f10 P3 a11, b11	1, 33 4, 36 41, 9 10, 42 43, 11 12, 44 45, 13 14, 46 48, 16 15, 47 50, 18
iff. P3	P2 d15 - d16 P3 a1 - b1 P3 e2 - f2 P3 a3 - b3 P3 e4 - f4 P3 a5 - b5 P3 e6 - f6 P3 a7 - b7 P3 g1 - g3 P3 b10 - c10 P3 d11 - e11 P3 b12 - c12 P3 d13 - e13	P2 d13, d14 P3 d1, e1 P3 b2, c2 P3 d3, e3 P3 b4, c4 P3 d5, e5 P3 b6, c6 P3 g5, g7 P3 e10, f10 P3 a11, b11	4, 36 41, 9 10, 42 43, 11 12, 44 45, 13 14, 46 48, 16 15, 47 50, 18
uded P2	P3 a1 - b1 P3 e2 - f2 P3 a3 - b3 P3 e4 - f4 P3 a5 - b5 P3 e6 - f6 P3 g1 - g3 P3 b10 - c10 P3 d11 - e11 P3 b12 - c12 P3 d13 - e13	P3 d1, e1 P3 b2, c2 P3 d3, e3 P3 b4, c4 P3 d5, e5 P3 b6, c6 P3 g5, g7 P3 e10, f10 P3 a11, b11	41, 9 10, 42 43, 11 12, 44 45, 13 14, 46 48, 16 15, 47 50, 18
.ff. P3	P3 a1 - b1 P3 e2 - f2 P3 a3 - b3 P3 e4 - f4 P3 a5 - b5 P3 e6 - f6 P3 g1 - g3 P3 b10 - c10 P3 b12 - c12 P3 d13 - e13	P3 b2, c2 P3 d3, e3 P3 b4, c4 P3 d5, e5 P3 b6, c6 P3 g5, g7 P3 e10, f10 P3 a11, b11	10, 42 43, 11 12, 44 45, 13 14, 46 48, 16 15, 47 50, 18
.ngle- P4	P3 e2 - f2 P3 a3 - b3 P3 e4 - f4 P3 a5 - b5 P3 e6 - f6 P3 g1 - g3 P3 b10 - c10 P3 d11 - e11 P3 b12 - c12 P3 d13 - e13	P3 b2, c2 P3 d3, e3 P3 b4, c4 P3 d5, e5 P3 b6, c6 P3 g5, g7 P3 e10, f10 P3 a11, b11	10, 42 43, 11 12, 44 45, 13 14, 46 48, 16 15, 47 50, 18
.ngle- P4	P3 a3 - b3 P3 e4 - f4 P3 a5 - b5 P3 e6 - f6 P3 g1 - g3 P3 b10 - c10 P3 d11 - e11 P3 b12 - c12 P3 d13 - e13	P3 d3, e3 P3 b4, c4 P3 d5, e5 P3 b6, c6 P3 d7, e7 P3 g5, g7 P3 e10, f10 P3 a11, b11	43, 11 12, 44 45, 13 14, 46 48, 16 15, 47 50, 18
.ngle- P4	P3 e4 - f4 P3 a5 - b5 P3 e6 - f6 P3 a7 - b7 P3 g1 - g3 P3 b10 - c10 P3 d11 - e11 P3 b12 - c12 P3 d13 - e13	P3 b4, c4 P3 d5, e5 P3 b6, c6 P3 d7, e7 P3 g5, g7 P3 e10, f10 P3 a11, b11	12, 44 45, 13 14, 46 48, 16 15, 47 50, 18
.ngle- P4	P3 a5 - b5 P3 e6 - f6 P3 a7 - b7 P3 g1 - g3 P3 b10 - c10 P3 d11 - e11 P3 b12 - c12 P3 d13 - e13	P3 d5, e5 P3 b6, c6 P3 d7, e7 P3 g5, g7 P3 e10, f10 P3 a11, b11	45, 13 14, 46 48, 16 15, 47 50, 18
.ngle- P4	P3 a7 - b7 P3 g1 - g3 P3 b10 - c10 P3 d11 - e11 P3 b12 - c12 P3 d13 - e13	P3 b6, c6 P3 d7, e7 P3 g5, g7 P3 e10, f10 P3 a11, b11	14, 46 48, 16 15, 47 50, 18
.ngle- P4	P3 a7 - b7 P3 g1 - g3 P3 b10 - c10 P3 d11 - e11 P3 b12 - c12 P3 d13 - e13	P3 d7, e7 P3 g5, g7 P3 e10, f10 P3 a11, b11	15, 47 50, 18
.ngle- P4	P3 g1 - g3 P3 b10 - c10 P3 d11 - e11 P3 b12 - c12 P3 d13 - e13	P3 e10, f10 P3 a11, b11	50, 18
	P3 d11 - e11 P3 b12 - c12 P3 d13 - e13	P3 a11, b11	,
	P3 b12 - c12 P3 d13 - e13		
	P3 d13 - e13	D2 _12 +12	19, 51
			52, 20
	• IDD b14 a14	P3 a13, b13 P3 e14, f14	21, 53 54, 22
	P3 b14 - c14 P3 d15 - e15	P3 e14, f14 P3 a15, b15	23, 55
lded	P3 b16 - c16	P3 e16, f16	56, 24
	P3 q13 - q15	P3 g9, g11	17, 49
	P4 f1 - q1	P4 a1, b1	25, 57
.ff.	P4 a2 - b2	P4 f2, g2	58, 26
· · · ·	P4 f3 - g3	P4 a3, b3	27, 59
P5	P4 a4 - b4	P4 f4, g4	60, 28
гэ	P4 15 - 95	P4 a5, b5	30, 62
	P4 a6 - b6	P4 f6, g6	63, 31
	P4 d1 - d2	P4 d3, d4	61, 29
	P4 d5 - d6	P4 d7, d8	64, 32
ff.			-
P6			
	Table 1. Conne	ector configura	tion on 6U te

SUMMARY OF TEST RESULTS

TR# 204690, REV.1.4



Contech Research

Environmental/Mechanical Test	Specification/Standard	Result	
Shock	MIL-STD-1344A, Method 2004.1, Test Condition A	Pass	
Random Vibration 1	MIL-STD-1344A, Method 2005.1, Test Condition V, letter D, 1.5 hours/axis	Pass	
Random Vibration 2	HALT/Step stress (0.125, 0.15, 0.175 g ² /Hz for 15 min. each; 0.2 g ² /Hz for 45 min.)	Pass LLCR, DWV & Interrupt. Some gold wear-through	
Bench Handling	MIL-STD-810F, Method 516.5, Procedure VI	Pass	
Vibration/Temperature	Random Vibration 1 plus -40 to 100°C	Pass	
Humidity	MIL-STD-1344A, Method 1002.2, Type III (240 hrs.)	Pass	
Salt Fog + SO ₂	ASTM G85, Annex A4 (cycle A4.4.4.1), two 24 hr. cycles	Pass	
Dust and Sand	MIL-STD-810F, Method 510.4, Procedures I and II	Pass	
Durability with Misalignment	EIA-364-09, 500 mate/unmate cycles	Pass	
Electrostatic Discharge (ESD)	EN 61000-4-2	Pass	
Insertion/Extraction Force	MIL-STD-1344A, Method 2013.1	76.5/57.2 lbs. (initial)	
Current Overload	IEC 60512-3	Pass	

TR# 204690, REV.1.4

PROJECT NO.: 204690	SPECIFICATION: VITA 46
PART NO.: S/N 026, 023	PART DESCRIPTION: connector
SAMPLE SIZE: 2	TECHNICIAN: MAG
START DATE: 1-6-05	COMPLETE DATE: 1-25-05
ROOM AMBIENT: 24 °C	RELATIVE HUMIDITY: 26 %
EQUIPMENT ID#: 207, 400	
LOW LEVEL CIRCUIT RESISTANCE (LL	CR)
PURPOSE:	
To evaluate contact resistance cl systems under conditions where ap not alter the physical contact is and films that degrade electrical sensitive to and may detect the induced by mechanical or thermal significant loss of contact press	oplied voltages and currents do nterface and will detect oxides l stability. It is also presence of fretting corrosion environments as well as any
PROCEDURE:	
The test was performed in accordate the following conditions:	ance with EIA 364, TP 23 with
Test Current : Open Circuit Voltage : No. of Positions Tested :	
REQUIREMENTS:	
Low level circuit resistance shat prior to and after each environme vibration. Failure is defined as or greater.	ent, in this case shock and
RESULTS:	
The LLCR data follows:	
TR# 204690, REV.1.4	Contech Research

T

S/N 026							
			Delta				
			values				
			units:				
			milliohms				
	~ .	~ .		_	~ .	~ .	
Temp °C	24	24	24	Temp °C	24	24	24
R.H. %	26	26	28	R.H. %	26	26	28
Date:	10Jan0	10Jan0	11Jan0	Date:	10Jan0	10Jan0	11Jan0
Date	5	5	5	Date	5	5	5
Pos. ID	Initia	M Shk	Vib	Pos.	Initia	M Shk	Vib
	1			ID	1		
1	27.7	-0.1	-1.0	36	27.7	-0.3	-1.1
2	30.0	-0.3	-0.9	37	34.2	-0.2	-0.9
3	23.2	-0.4	-1.1	38	22.3	-0.2	-0.7
4 5	29.3 30.8	-0.2 -0.2	-2.1 -0.6	39 40	32.6 25.7	-0.3 -0.2	-0.6 -0.6
6	24.7	-0.2	-0.7	40 41	25.7 35.1	-0.2	-0.8
7	29.7	-0.2	-0.7	42	29.5	-0.1	-0.9
8	22.5	-0.2	-0.6	43	33.6	-0.5	-1.1
9	35.7	-0.4	-1.1	44	29.5	-0.3	-1.2
10	28.9	-0.3	-0.9	45	34.0	-0.4	-1.5
11	34.0	-0.1	-0.9	46	29.4	0.0	-0.8
12	29.1	-0.3	-1.3	47	33.6	-0.3	-1.0
13	34.0	-0.2	-1.2	48	32.6	-0.2	-1.0
14	28.5	-0.1	-0.7	49	34.1	-0.1	-0.7
15	34.2	-0.4 -0.3	-1.0	50	36.6	-0.3	-0.9
16 17	33.0 34.9	-0.3	-1.0 -1.6	51 52	29.7 36.5	-0.1 -0.1	-0.7 -0.7
18	37.4	-0.8	-1.1	53	29.8	0.1	-0.4
19	29.1	-0.3	-0.7	54	36.8	-0.1	-0.7
20	37.2	-0.4	-0.9	55	28.8	-0.1	-0.7
21	29.3	-0.1	-0.6	56	36.6	-0.1	-0.7
22	37.6	-0.2	-0.9	57	25.9	0.0	-0.1
23	27.9	-0.1	-0.4	58	30.7	-0.6	-1.5
24	37.2	-0.1	-0.6	59	24.3	0.0	-0.5
25	22.7	0.1	-0.2	60	33.4	-0.2	-0.7
26	33.3	-0.5	-1.2	61	28.2	-0.1	-1.0
27	26.0 21 5	0.0 -0.2	-0.5 -0.7	62 63	23.8	0.0 -0.3	-0.5
28 29	31.5 27.8	-0.2 0.1	-0.8	63 64	33.9 27.3	-0.3 -0.1	-0.8 -0.7
30	27.8	-0.1	-0.8	04	41.3	-0.1	-0.1
31	31.9	-0.2	-0.8	MAX	37.6	0.1	-0.1
32	27.9	-0.1	-0.8	MIN	22.3	-0.8	-2.1
33	29.6	-0.1	-1.6	AVG	30.6	-0.2	-0.9
	<u>_</u> 0133.0	-0.2	-0.9	STD	4.2	0.2	0.3
35	6.4	-0.3	-1.3				\supset
ACCRED 1478 -							7
TR# 2046		1 4					arah

TR# 204690, REV.1.4

Contech Research

S/N 023

Delta values units: milliohms

	Temp °C	24	24	24	24	24	23	
	R.H. %	28	46	20	20	20	18	
	Date:	13Jan0	14Jan0	20Jan0	20Jan0	21Jan0	25Jan0	
		5	5	5	5	5	5	
	Pos. ID	Initia	M Shk	Vibrat	Vibrat	Vibrat	Vibrat	
		1		ion	ion	ion	ion	
				Step 1	Step 2	Step 3	Step 4	
	1	29.0	-0.1	-2.2	-2.1	-2.4	-2.2	
	2	32.4	-0.1	-1.7	-1.5	-1.9	-1.6	
	3	24.0	-0.3		-1.2	-1.5	-1.4	
	4	28.0	-0.2	-2.3		-2.5	-2.4	
	5	29.6	-0.1	-1.3		-1.5	-1.3	
	6	26.2	-0.3		-1.1	-1.4		
	7	30.9			-1.0	-1.3		
	8	22.7						
	9	33.9	-0.1					
	10	28.3	-0.2	-1.2		-1.6		
	11	33.3	-0.2	-2.0		-2.2	-2.0	
	12	27.9	-0.1				-1.1	
	13	34.1	-0.4			-2.1	-1.8	
	14	29.0	-0.4			-1.6		
	15	34.1	-0.5					
	16 17	34.5 34.4	0.0 -0.3	-1.8 -1.5	-1.6 -1.1	-2.0 -1.5	-1.6 -0.2	
	18	34.4 36.7	-0.1	-1.5 -1.5		-1.6	0.3	
	19	28.7	-0.1 -0.4	-1.2	-1.1	-1.4	-1.4	
	20	36.9	-0.1			-1.5		
	20	28.9				-1.4		
	22		0.2					
	23	28.1	-0.3	-1.3		-1.6	-1.5	
	24	39.1	-0.4	-1.7	-1.3	-1.7	-1.1	
	25	23.4	-0.2	-0.8	-0.2	-1.0	-0.9	
	26	34.4	-0.3		-1.3	-1.7		
	27	25.7			-0.8			
	28	32.3	-0.3	-1.7	-1.5	-1.8	-1.6	
	29	27.9	-0.1	-1.2	-1.1	-1.4	-1.3	
	30	27.1	-0.3	-1.4	-1.2	-1.6	-1.7	
	31	31.9	-0.2	-1.5	-1.1	-1.5	-1.4	
	32	27.7	-0.2	-1.0	-1.0	-1.3	-1.1	
	33	29.3	-0.1	-1.5	-1.4	-1.8	-1.6	
	34	35.3	0.0	-1.2	-0.9	-1.2	-1.0	
	1478 - 01 35	26.8	-0.2	-1.3	-1.3	-1.5	-1.4	_
								シ
	ACCREDITED 1478 - 02							\geq
'R# 2	204690, REV	.1.4				Conto	ch Dosoa	rch

S/N cont. 13Jan0 14Jan0 20Jan0 20Jan0 21Jan0 25Jan0 Date: 5 5 5 5 5 5 Pos. ID Initia M Shk Vibrat Vibrat Vibrat Vibrat 1 ion ion ion ion 36 29.3 -0.1 -1.5 -1.5 -1.8 -1.737 32.5 -1.5 -0.4-1.2 -1.6 -1.3 38 23.6 -0.1 -0.9 -0.9 -1.1 -1.0 39 33.9 -0.4-1.4 -1.1 -1.5 -1.2 40 25.9 -0.3 -1.0 -1.0 -1.3 -1.2 41 33.7 -0.2 -1.5 -0.8 -1.7 -1.1 42 28.7 -0.4 -0.9 -0.9 -1.2 -1.3 43 32.6 -0.3 -1.7 -1.6 -2.0 -1.8 44 28.5 -0.1 -0.8 -1.0 -0.8 -1.1 45 33.7 -0.4-2.0 -2.0 -2.3-2.1 29.6 46 -0.4-1.2 -1.1 -1.3 -1.3 47 34.8 -0.6 -1.8 -1.2 -1.8 -1.2 -1.7 48 33.8 -0.4-1.7 -1.5 -2.0 49 33.7 -0.1 -1.1 -0.8 -1.3 -0.8 50 36.1 0.0 -1.3 -1.1 -1.5 -1.0 51 29.1 -0.2 -0.9 -0.8 -1.0 -1.1 52 36.6 -0.1 -1.9 -1.5 -1.9 -1.7 -1.753 29.9 -0.5 -1.6 -1.9 -1.8 54 37.0 0.1 -1.3 -1.0 -1.4 -1.1 -1.4 55 28.8 -0.5 -1.3 -1.5 -1.4 56 37.8 0.2 -1.1 -0.7 -1.1 -0.8 57 26.5 -0.1 -0.7 -0.5 -1.0 -1.0 58 31.6 -0.3 -1.8 -1.5 -1.9 -1.6 59 24.3 -0.4-1.1 -1.2 -1.1 -1.1 60 34.0 -0.2 -1.6 -1.3 -1.7 -1.4 61 27.9 -0.2 -1.6 -1.5 -1.7 -1.6 62 25.0 -0.4-1.2 -1.1-1.3 -1.363 33.6 -0.2 -1.2-0.8 -1.3 -1.0 64 27.7 -0.3 -1.2 -1.2 -1.5 -1.4 39.1 0.2 -0.7 MAX -0.2 -1.0 0.3 22.7 -2.3 -0.6 -2.2 -2.5 -2.4MIN AVG 30.8 -0.2 -1.4-1.2 -1.6 -1.3 STD 4.1 0.2 0.4 0.4 0.3 0.4

TR# 204690, REV.1.4

		Safe	ety Grou	und			
	5/N 026			De val uni milli	ts:		
I I	Temp °C R.H. % Date: Pos. ID	5	24 26 10Jan0 5 M Shk	24 28 11Jan0 5 Vib			
	1 2 3		0.01 0.00 -0.04				
	MAX MIN AVG STD Open	0.4 0.3 0.3 0.1 0	0.01 -0.04 -0.01 0.03 0	0.08 -0.06 0.00 0.07 0			
S/N 023			D val uni milli	ts:			
Temp °C R.H. % Date: Pos. ID	5	5	5	24 20 20Jan0 5 Vibrat	5	5	
1 2 3	1 0.24 0.23 0.30	0.03	ion Step 1	ion Step 2 0.03 0.04 0.56	ion	ion	
MAX MIN AVG STD	0.3 0.2 0.3 0.0 0	0.10 0.03 0.06 0.04 0	1.01 -0.01 0.43 0.53 0	0.56 0.03 0.21 0.30 0	0.4 0.0 0.2 0.2 0	1.1 0.0 0.4 0.6 0	
ACCREDITED 1478 - 02 204690 REV					C	XR	

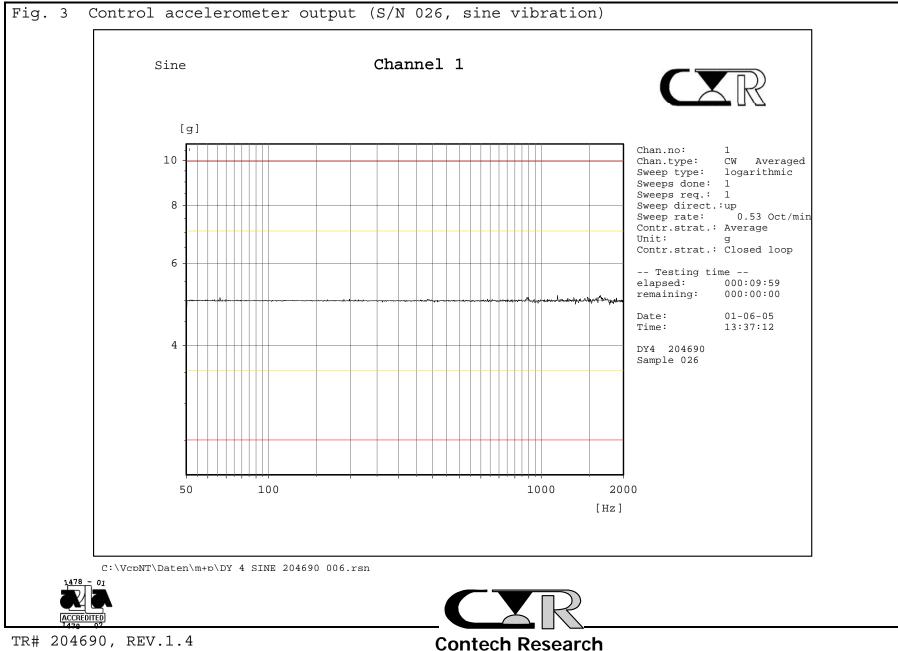
TR# 204690, REV.1.4

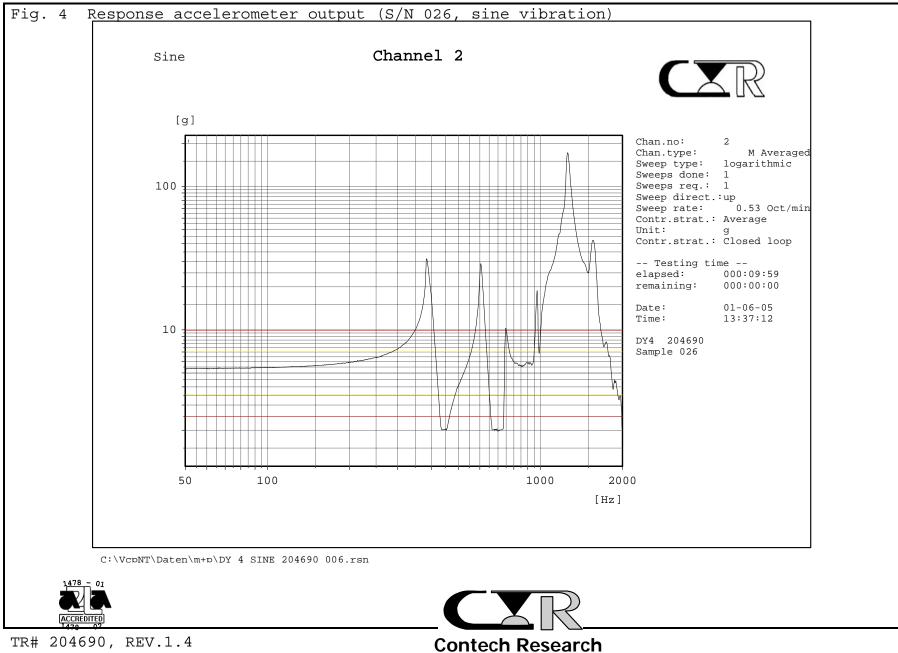
PROJECT NO.: 204690	SPECIFICATION: VITA 46
PART NO.: 026, 023	PART DESCRIPTION: connector
SAMPLE SIZE: 2	TECHNICIAN: MAG
START DATE: 1-6-05	COMPLETE DATE: 1-25-05
, i i i i i i i i i i i i i i i i i i i	RELATIVE HUMIDITY: 26 %
EQUIPMENT ID#: 321	
DIELECTRIC WITHSTANDING VOLTAG	<u>E (SEA LEVEL)</u>
PURPOSE:	
To determine if the connectors integrity after being stressed environmental conditioning.	maintain their dielectric by exposure to mechanical and
PROCEDURE:	
1. The test was performed in ac Method 3001.	cordance with MIL-STD-1344,
2. Test Conditions:	
Between Adjacent Contacts (Between Rows Between Contacts and Hardwar Between Contacts and Shell Mated Condition Mounting Condition Hold Time Rate of Application Test Voltage	: No
REQUIREMENTS:	
1. When the specified test vol no evidence of breakdown, as	tage is applied, there shall be rcing, etc.
2. The leakage current shall n	ot exceed 5 ma.
TR# 204690, REV.1.4	CONTECH Research
エハ市 ムレヨレノレノ 八山V・エ・ヨ	

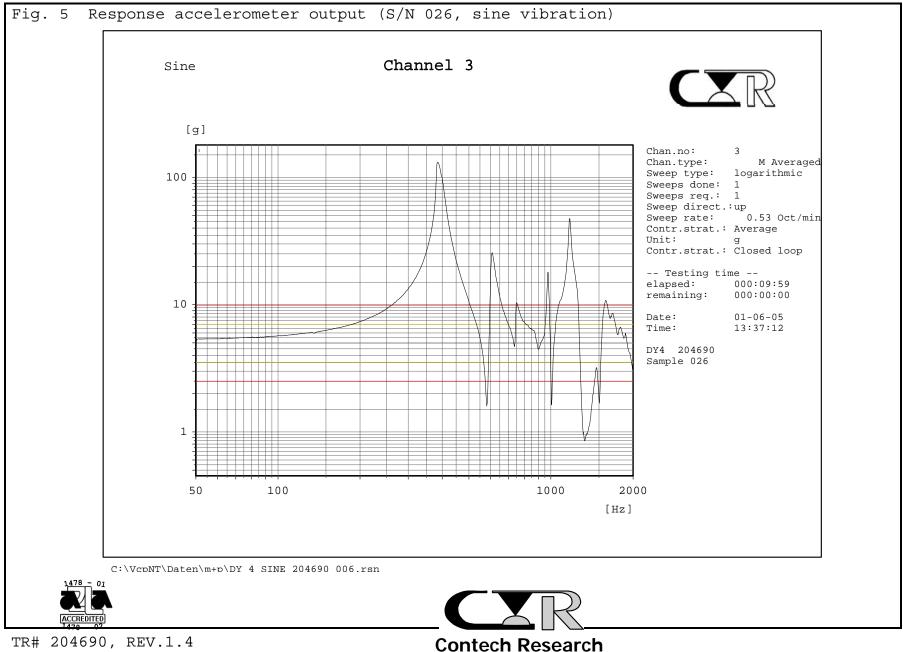
RESULTS:

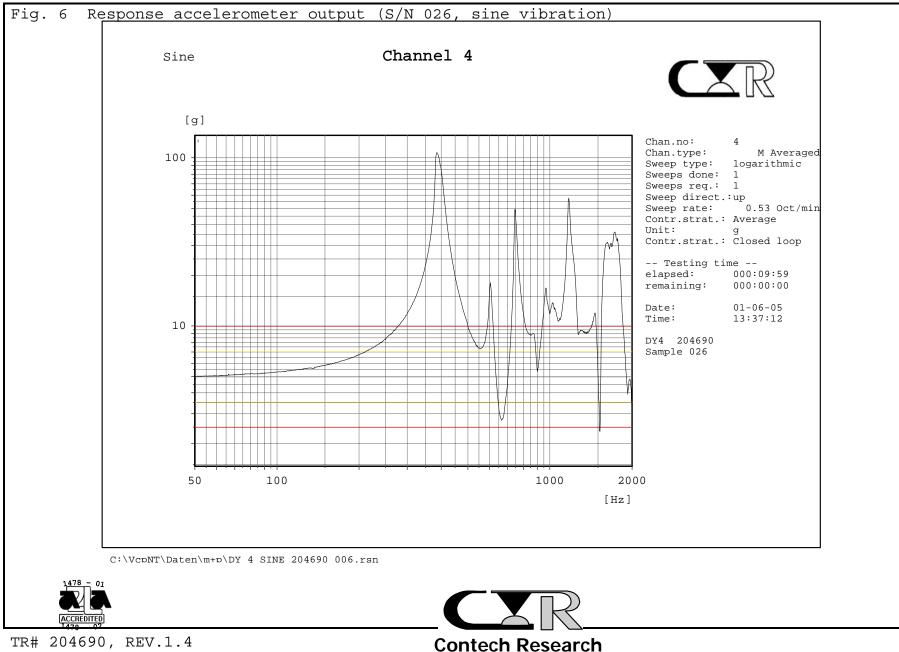
- 1. All test samples as tested met the requirements as specified.
- 2. The following is a summary of the observed data.

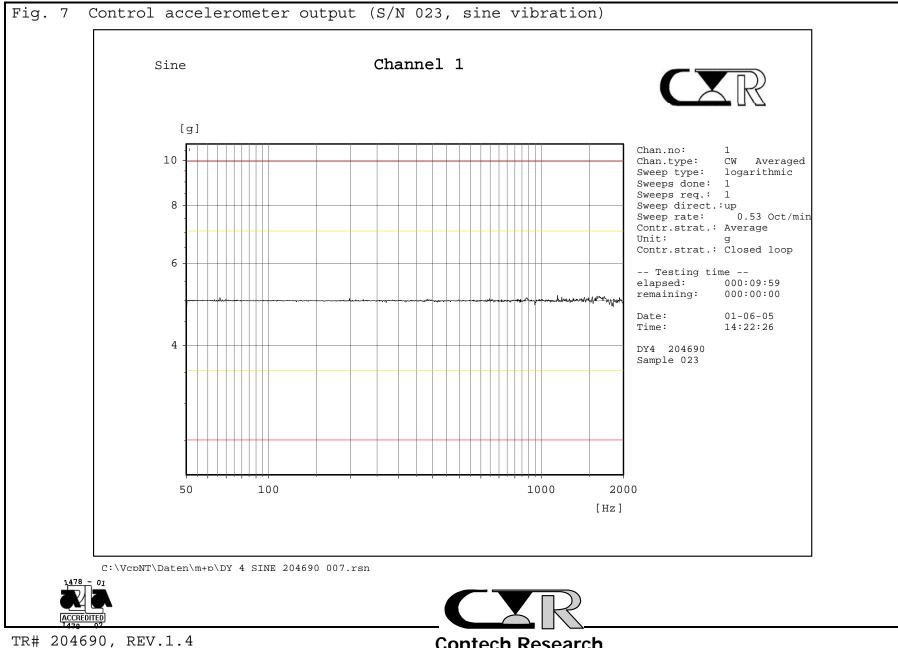
	-			-	-		
	Initial	Shock	Vibration		Initial	Shock	Vibration
Req.	No Break	down					
Sample ID	SN 026	SN 026	SN 026	Sample ID	SN 026	SN 026	SN 026
Jl al-bl	Pass	Pass	Pass	J6 al-bl	Pass	Pass	Pass
Jl el-fl	Pass	Pass	Pass	J6 el-fl	Pass	Pass	Pass
J1 c2-d2	Pass	Pass	Pass	J6 c2-d2	Pass	Pass	Pass
J1 g2-h2	Pass	Pass	Pass	J6 g2-h2	Pass	Pass	Pass
J1 c8-d8	Pass	Pass	Pass	J6 c8-d8	Pass	Pass	Pass
J1 g8-h8	Pass	Pass	Pass	J6 g8-h8	Pass	Pass	Pass
J1 a9-b9	Pass	Pass	Pass	J6 a9-b9	Pass	Pass	Pass
J1 e9-f9	Pass	Pass	Pass	J6 e9-f9	Pass	Pass	Pass

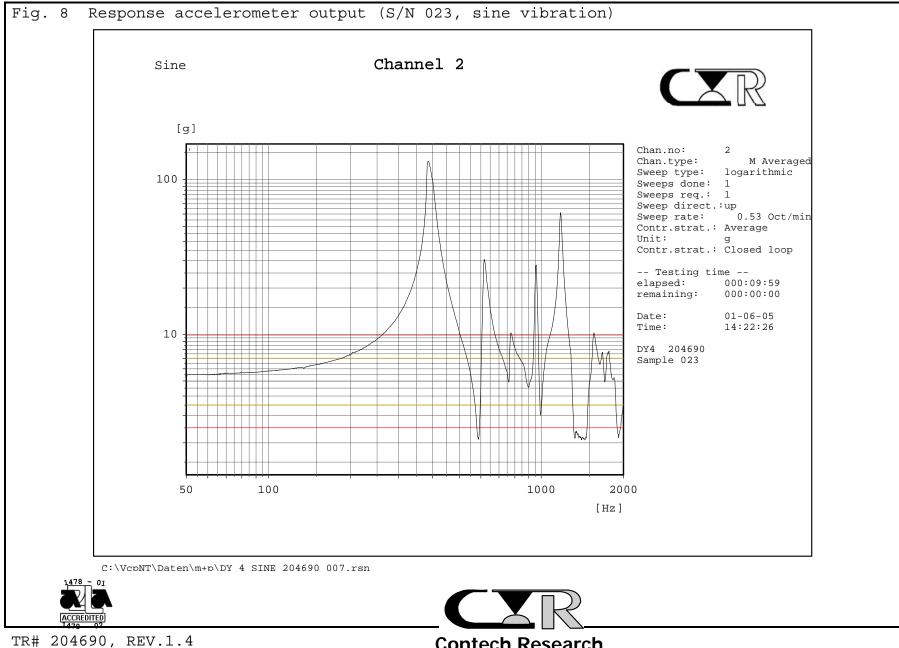

	Initial	Shk/Vib			Initial	Shk/Vib	
Req.	No Breakdown						
Sample ID	SN 023	SN 023		Sample ID	SN 023	SN 023	
J1 a1-b1	Pass	Pass		J6 a1-b1	Pass	Pass	
J1 e1-f1	Pass	Pass		J6 e1-f1	Pass	Pass	
J1 c2-d2	Pass	Pass		J6 c2-d2	Pass	Pass	
J1 g2-h2	Pass	Pass		J6 g2-h2	Pass	Pass	
J1 c8-d8	Pass	Pass		J6 c8-d8	Pass	Pass	
J1 g8-h8	Pass	Pass		J6 g8-h8	Pass	Pass	
J1 a9-b9	Pass	Pass		J6 a9-b9	Pass	Pass	
J1 e9-f9	Pass	Pass		J6 e9-f9	Pass	Pass	

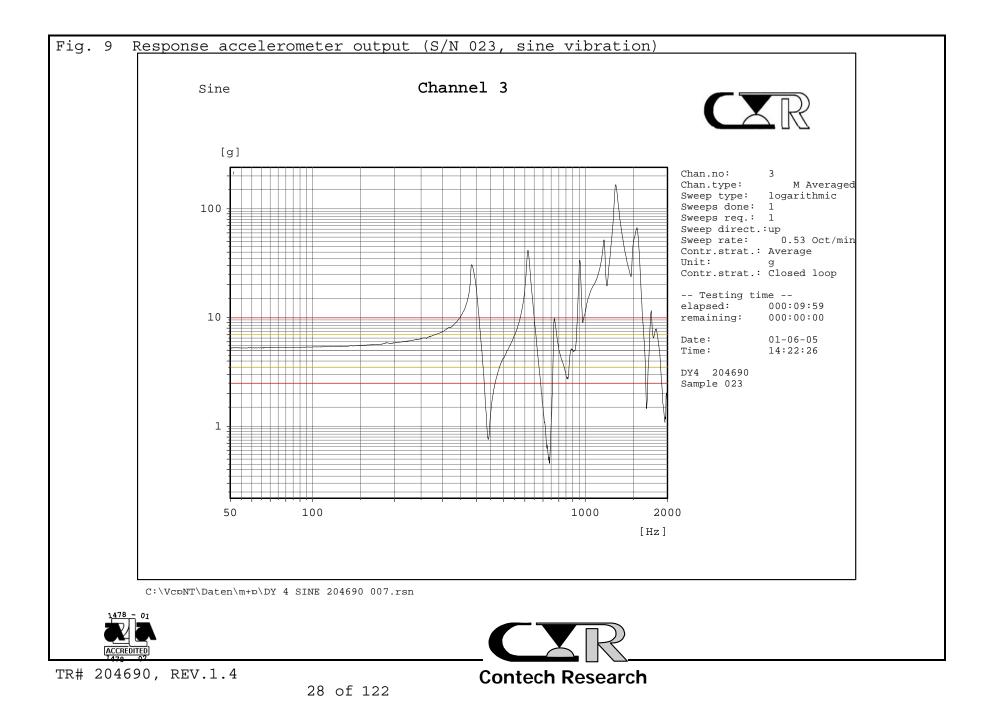


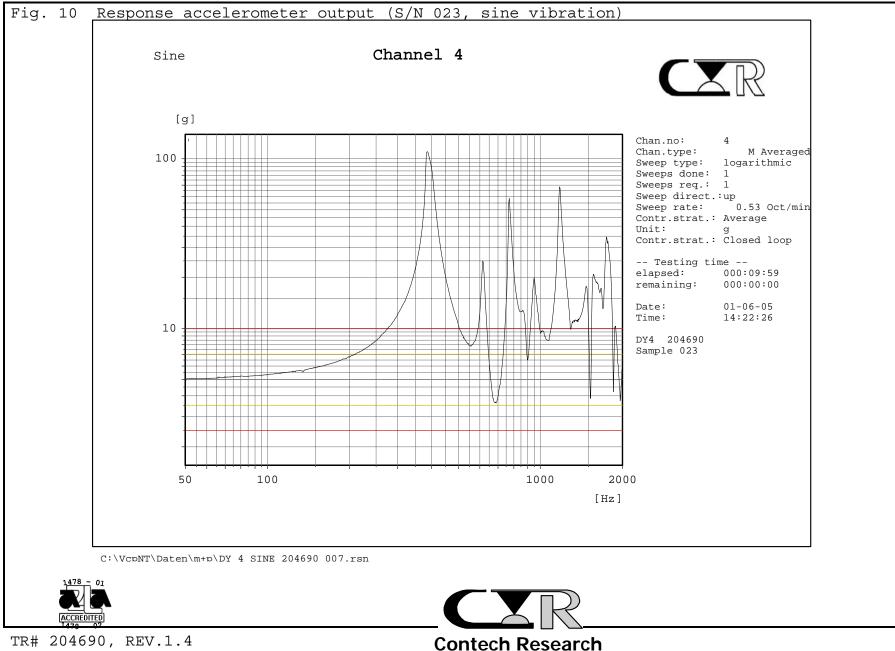

TR# 204690, REV.1.4



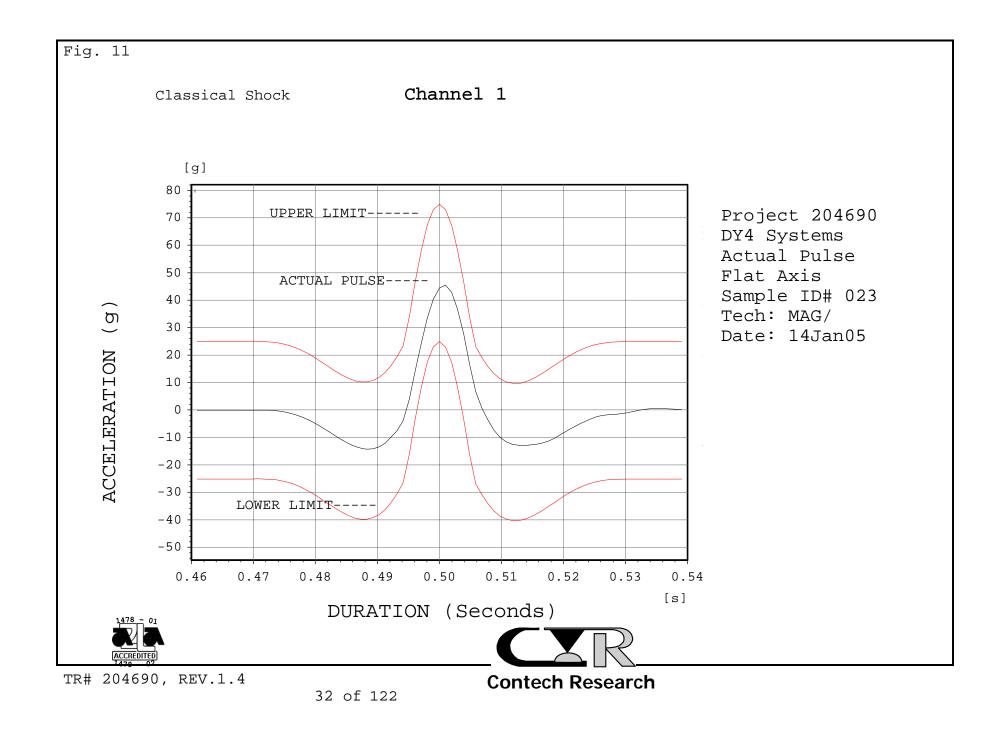

PROJECT NO.: 204690	SPECIFICATION: VITA 46			
PART NO.: 026, 023	PART DESCRIPTION: connector			
SAMPLE SIZE: 2	TECHNICIAN: ggo			
START DATE:	COMPLETE DATE:			
ROOM AMBIENT: 24 °C	RELATIVE HUMIDITY: 28 %			
EQUIPMENT ID#: 533, 1166, 11				
VIBRATION, SINUSOIDAL				
PURPOSE:				
To record resonance data.				
PROCEDURE:				
Test Conditions:				
Amplitude : 5 G	to 2000 Hz G's minutes			
 REQUIREMENTS:				
1. The sweep shall be recorded. Resonances shall be compared to typical 6U conduction cooled product.				
2. The LLCR shall be measured and recorded.				
SINE VIBRATION RESULTS:				
1. The resonance plots follow. Channel 1 refers to the control accelerometer. Channels 2 to 4 are response accelerometers on the PWB and the conduction frame. The responses were compared to the 6U conduction cooled product upon which the VITA 46 test vehicle was designed. For the first two modes, the resonant frequencies were within 5%.				
2. See the LLCR section for LLCR data.				
1478 - 01 ACCREDITED 1478 - 02				
TR# 204690, REV.1.4	Contech Research			

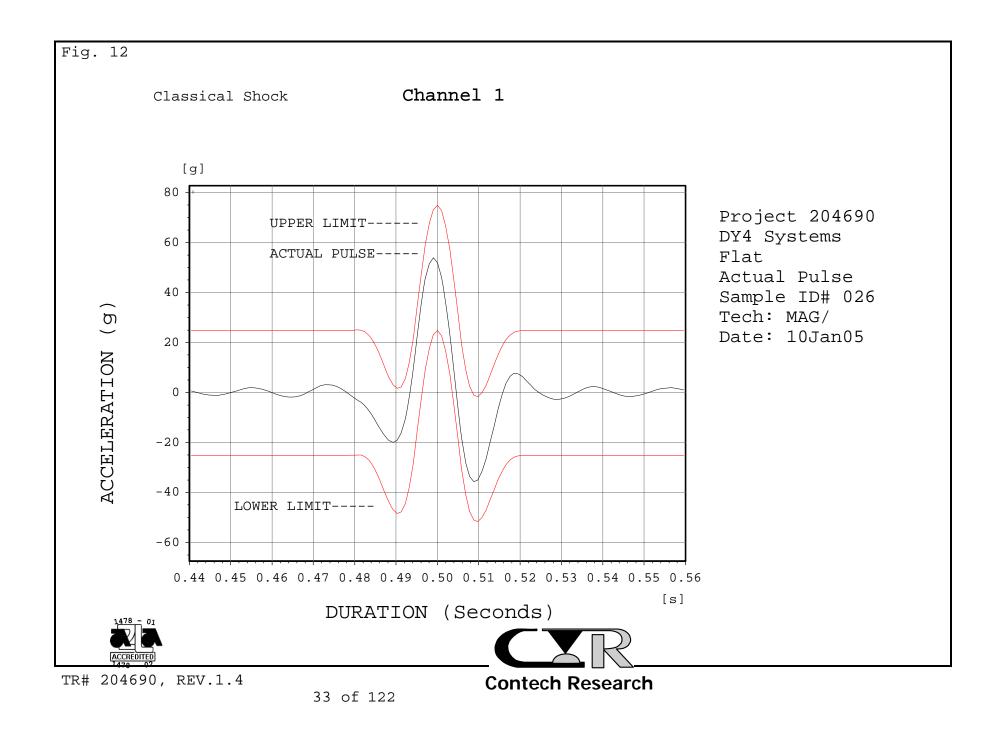


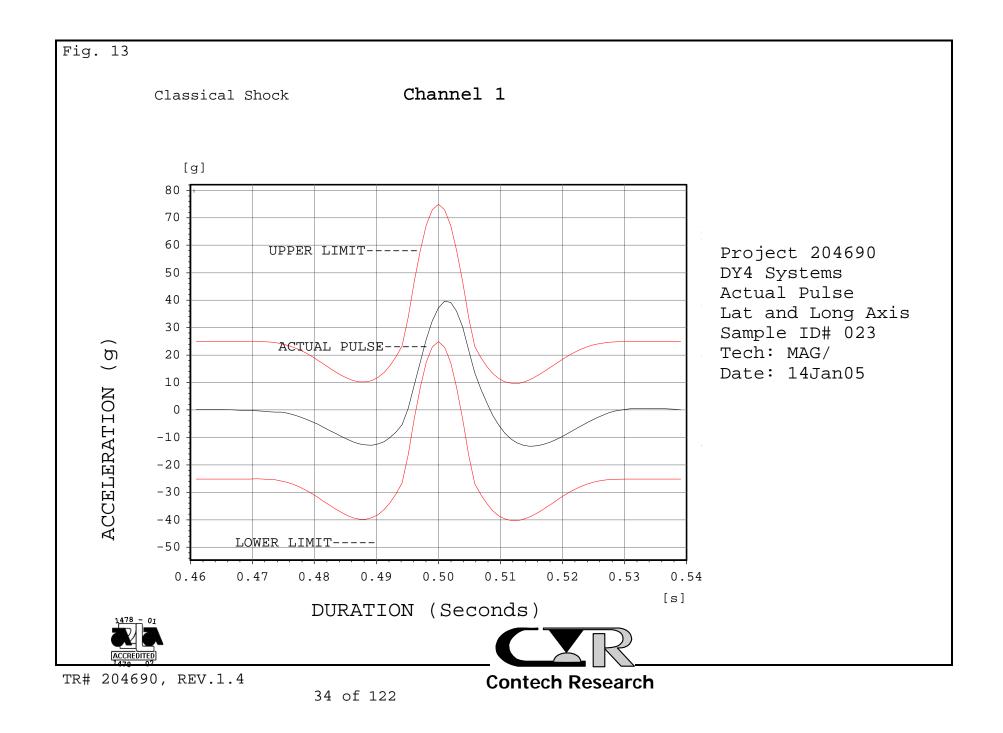


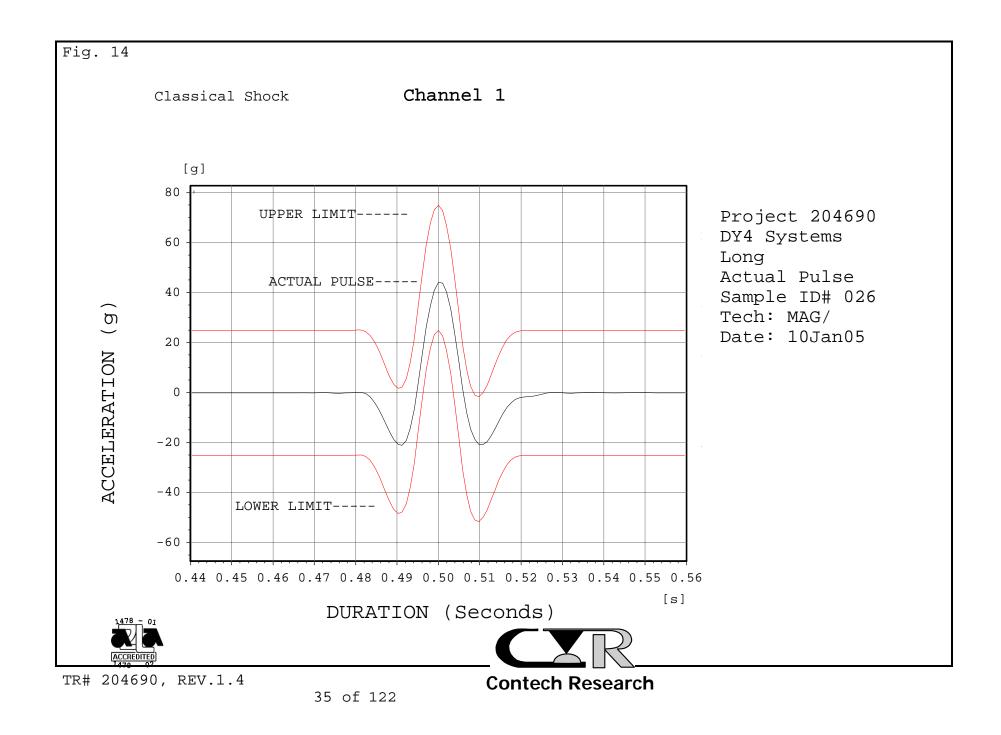


PROJECT NO.: 20469	00-1 SPECIFICATION: VITA 46				
PART NO.: 026, 023	PART DESCRIPTION: blade				
SAMPLE SIZE: 2	TECHNICIAN: MG/GGO				
START DATE: 1-7-05	COMPLETE DATE: 1-14-05				
ROOM AMBIENT: 24	°C RELATIVE HUMIDITY: 28 %				
EQUIPMENT ID#: 533, 1121	1166, 1167, 1168, 1169, 1271, 1272,				
MECHANICAL SHOCK (SPECIFIED PULSE)					
PURPOSE:					
connectors for use w	hanical and electrical integrity of ith electronic equipment subjected to expected from handling, transportation,				
PROCEDURE:					
 The test was performed in accordance with MIL-STD-1344A, Method 2004.1, Test Condition A. 					
2. Test Conditions:					
Wave Form	: 50 G's : 11 Milliseconds : ½ sine : 18 (3 in each of 6 directions: +/-X,				
 REQUIREMENTS:					
1. There shall be no evidence of physical damage to the test samples as tested.					
2. There shall be no contact interruption greater than 10 ns (ref. EIA-364-87, Test condition D).					
3. The LLCR and DWV shall be measured and recorded.					


TR# 204690, REV.1.4


SHOCK RESULTS:


- 1. There was no evidence of physical damage to the test samples as tested.
- 2. There was no interruption greater than 10 ns.
- 3. See the LLCR and DWV sections for LLCR and DWV data (passed).
- 4. The shock plots follow:



PROJECT NO.: 204690-1	SPECIFICATION: VITA 46
PART NO.: 026	PART DESCRIPTION: Connector
SAMPLE SIZE: 1	TECHNICIAN: MG/GGO
START DATE: 1-10-05	COMPLETE DATE: 1-11-05
ROOM AMBIENT: 24 °C	RELATIVE HUMIDITY: 26 %
EQUIPMENT ID#: 533, 1166, 116 1121	7, 1168, 1169, 1271, 1272,

VIBRATION, RANDOM

PURPOSE:

The purpose of the random vibration test was to determine if the VITA 46 connector was able to survive the vibration level and duration shown below (0.1 g^2/Hz , 1.5 hours per axis).

INTRODUCTION:

Random vibration causes relative displacements which can result in connector contact gold plating wear-through, fretting corrosion, and eventually intermittent and open electrical contact. The motion which causes these displacements is the mode shape for the 1st natural frequency of the plug-in module, and is termed "oil-canning". Oil-canning causes the plug-in module's connectors to "rock" in the relatively fixed backplane connectors, leading to the contact issues mentioned above. The connectors in the middle of the card (e.g. P2, P3, P4) experience the most "rocking", whereas those near the card edges (e.g. P0, P6) experience much less due to the edge condition provided by the wedgelock retainers.

Oil-canning of the backplane can also cause connector contact relative displacements and the associated issues, however the vibration acceleration must be enough to overcome the static friction between contacts. For the connector set tested on the 6U test card, the minimum measured extraction force is 53 Lbf. The weight of the single slot backplane (ref. Fig. 1) is 0.36 Lb. A simple calculation (F=ma) gives an acceleration of 146 g. This is well beyond the accelerations expected from the random vibration input (e.g. 12 g_{rms}), thus backplane oil-canning is not expected to be an issue at the tested random vibration levels.

TR# 204690, REV.1.4

PROCEDURE:

Test Conditions (ref. MIL-STD-1344A, Method 2005.1, Test Condition V, letter D):

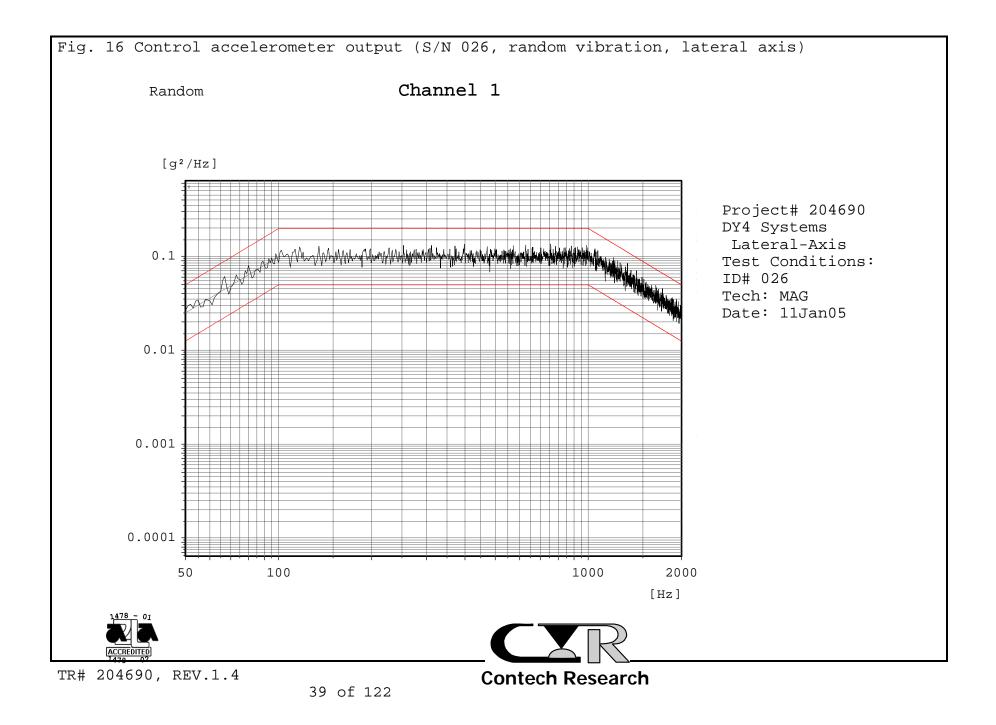
Power Spectral Density	$0.1 g^2/Hz$
	max.
Frequency	50-2000 Hz
grms	11.95
Duration	1.5 hour each
	axis
Samples	S/N 026

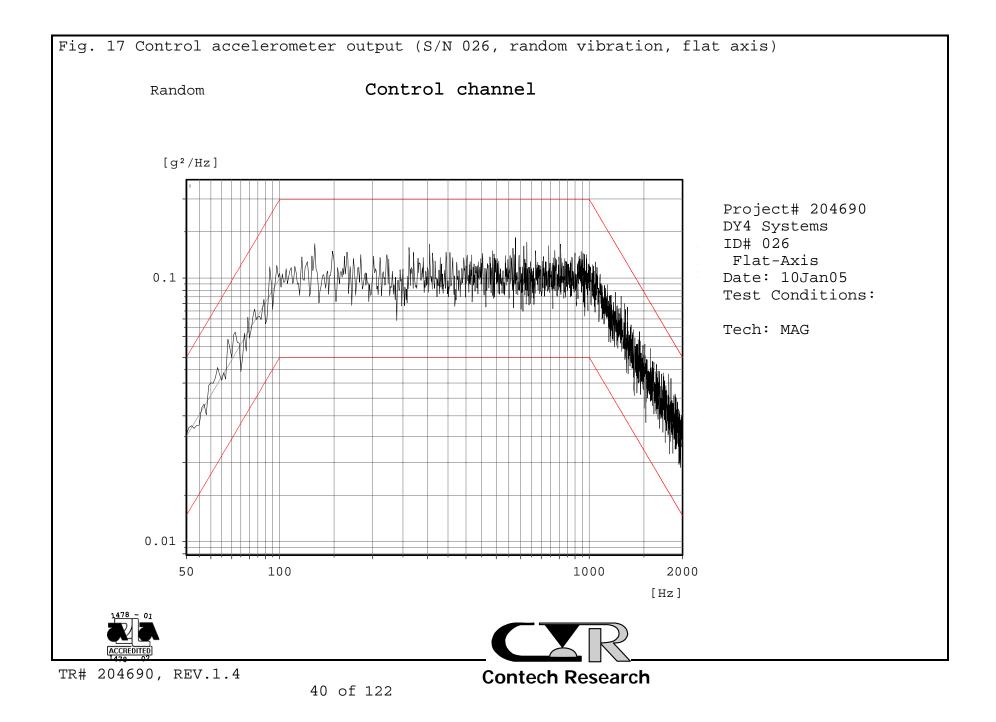
_ _ _ _ _ _ _ _ _ _ _ _

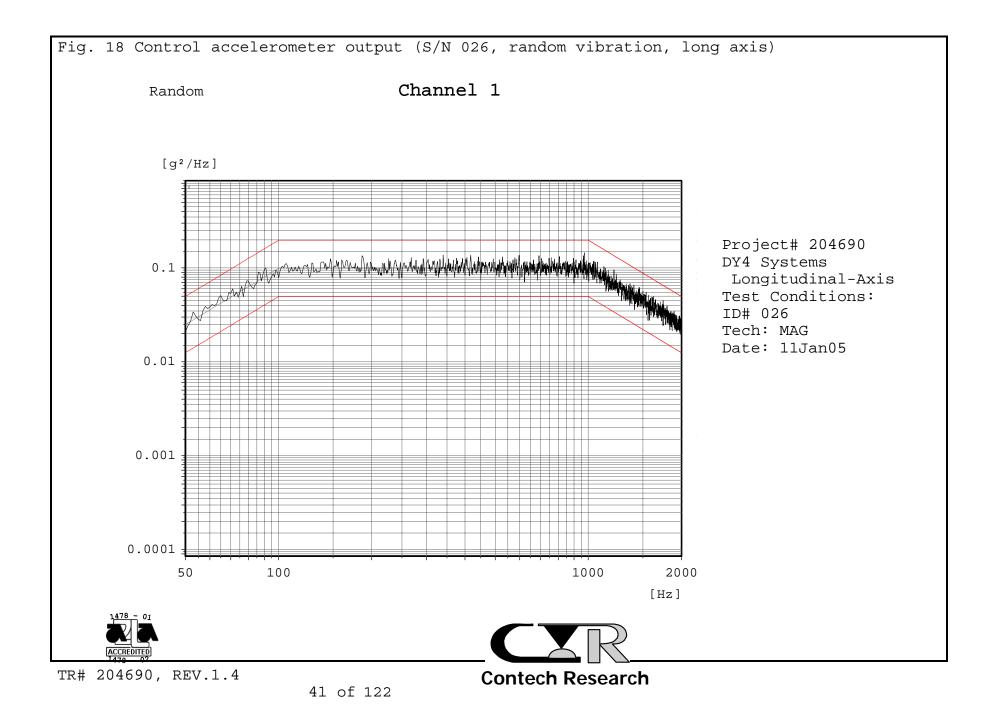
REQUIREMENTS:

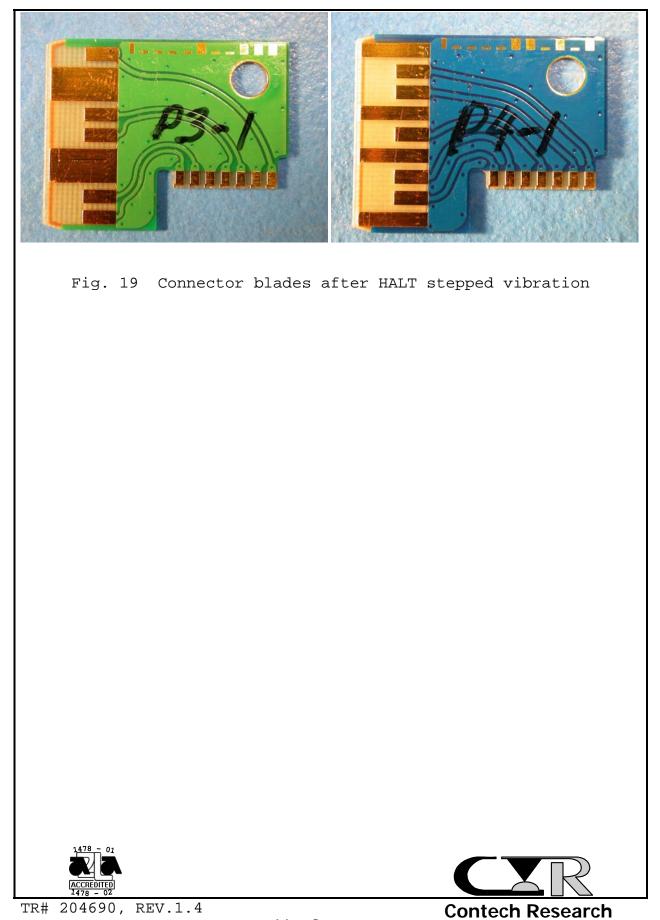
- 1. There shall be no evidence of physical damage to the test samples as tested.
- 2. There shall be no contact interruption greater than 10 nanoseconds (ref. EIA-364-87, Test condition D).
- 3. The LLCR and DWV shall be measured and recorded.
- 4. There shall be no visible wear-through of the connector contact gold plating under a magnification of 30-40X.

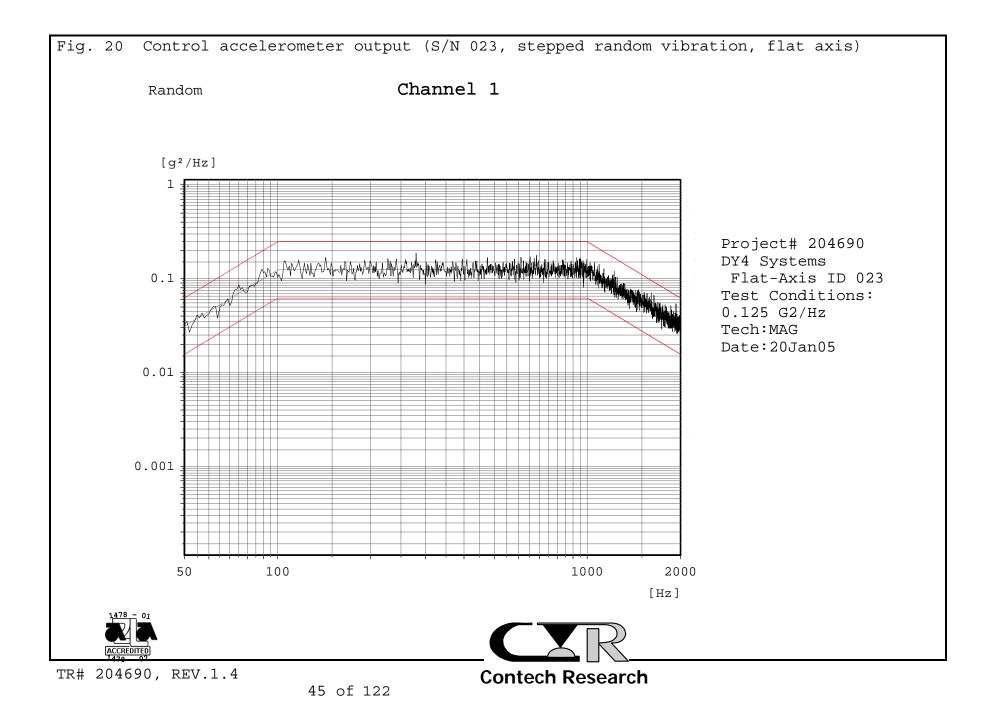
RANDOM VIBRATION QUAL. RESULTS:

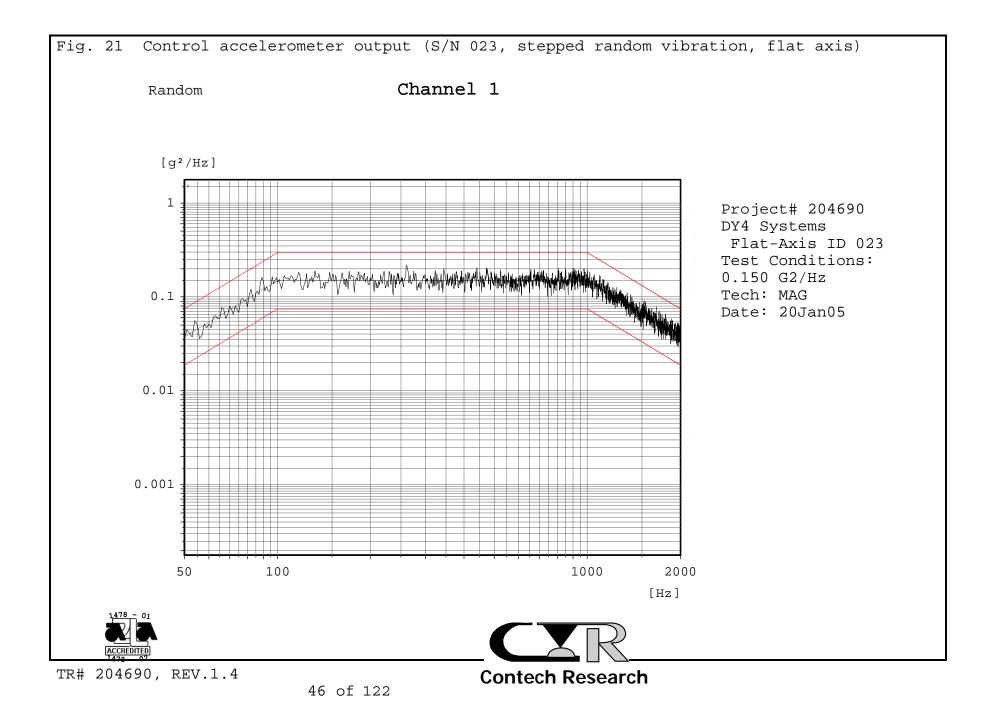

- 1. There was no evidence of physical damage to the test samples.
- 2. There was no interruption greater than 10 nanoseconds.
- 3. See the LLCR and DWV sections for LLCR and DWV data (passed).
- 4. Visual Inspection was performed on the daughtercard connector blades by removing them from their housings. All blades that were measured for LLCR or monitored for interrupts were inspected. Two of the blades are shown below. There was evidence of fretting wear, but none of the locations exhibited gold wear-through or fretting corrosion. SEM/EDS (Scanning Electron Microscopy/Energy Dispersive Spectroscopy) confirmed that gold wear-through had not occurred.

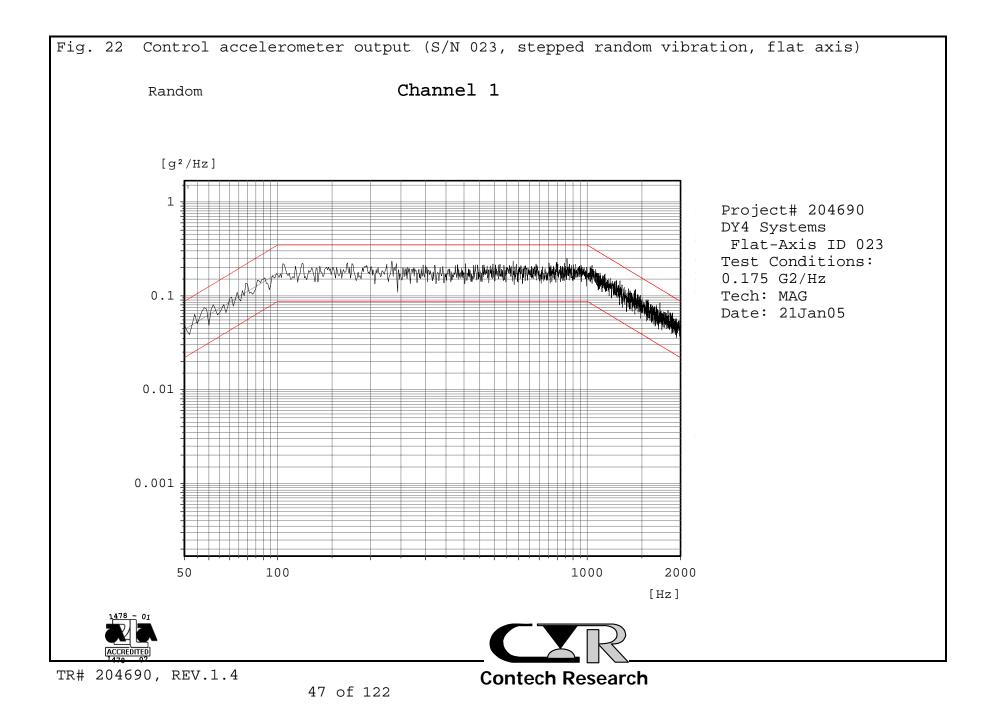


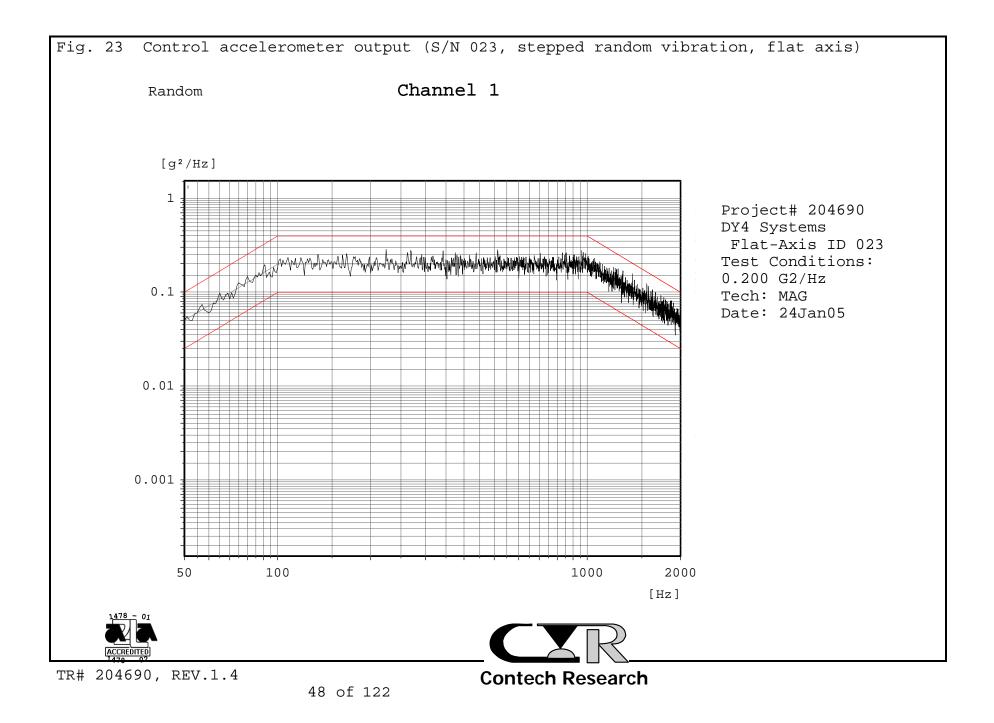

Fig. 15 Connector blades after vibration qualification

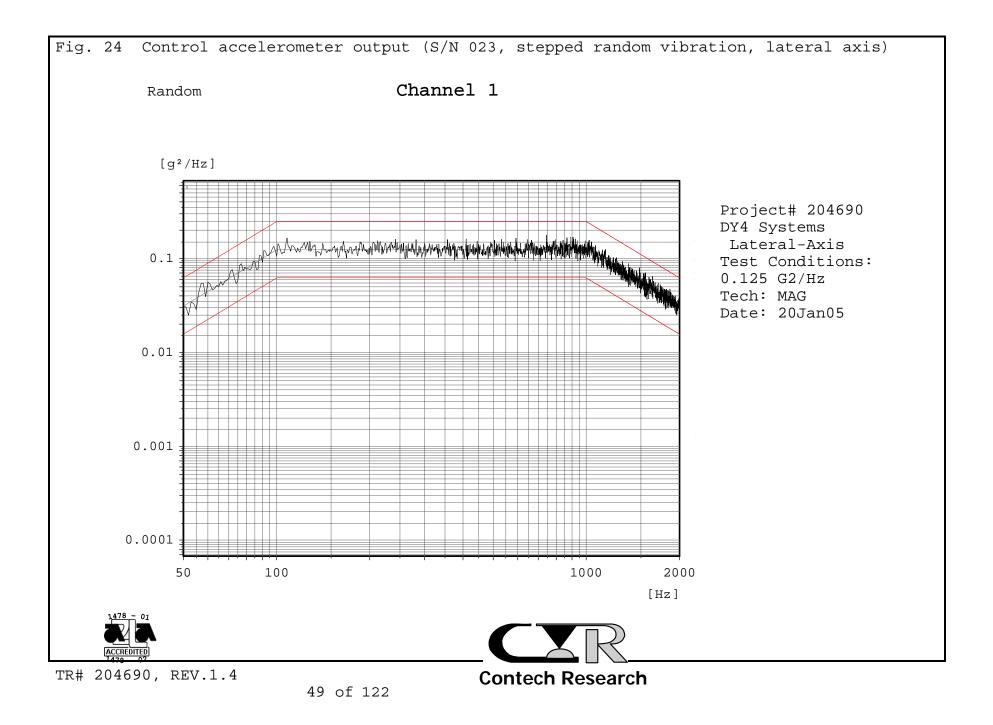


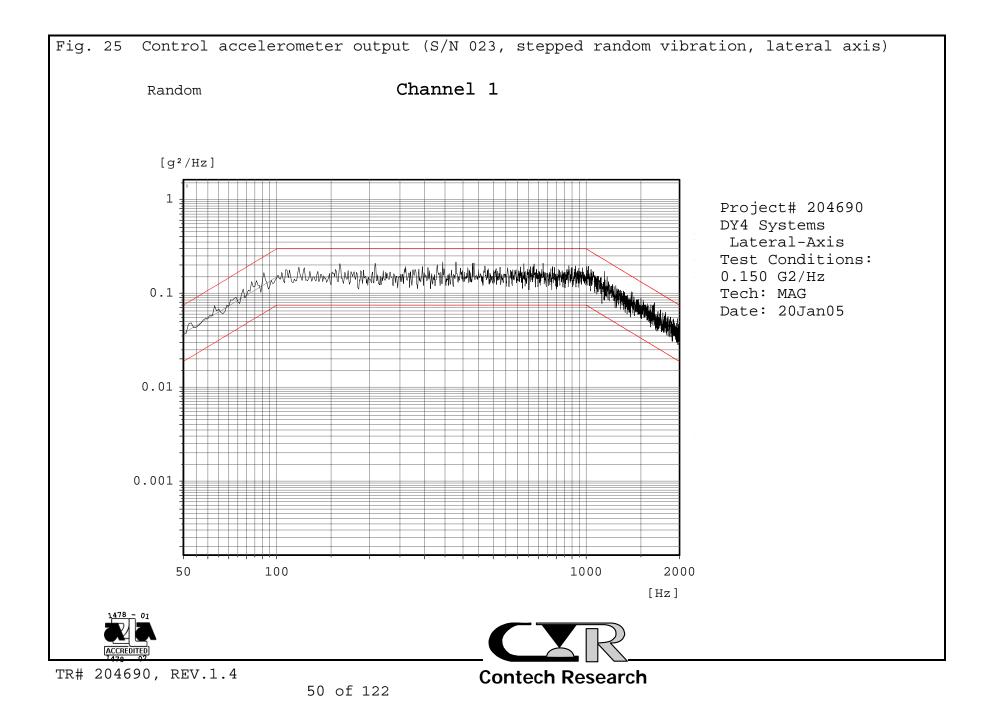

PROJECT NO.: 204690-1 SPECIFICATION: VITA 46 PART DESCRIPTION: Connector PART NO.: 023 -----TECHNICIAN: MG/GGO SAMPLE SIZE: 1 START DATE: 1-20-05 COMPLETE DATE: 1-24-05 -----ROOM AMBIENT: 24 °C RELATIVE HUMIDITY: 20 % EQUIPMENT ID#: 533, 1166, 1167, 1168, 1169, 1271, 1272, 1121 VIBRATION, RANDOM, HALT PURPOSE: To perform Highly Accelerated Life Test (HALT) stepped random vibration in order to establish operating limits. _____ _____ PROCEDURE: Test Conditions (ref. VITA 46 Test Plan, Jan., 2005): 0.125, .15, .175 and .2 g²/Hz Power Spectral Density Frequency 50-2000 Hz 13.4, 14.6, 15.8, 16.9 grms Duration 15 minutes each level, 45 min. for $0.2 q^2/Hz$ Samples S/N 023 _____ **REQUIREMENTS:** 1. There shall be no evidence of physical damage to the test samples as tested. 2. There shall be no contact interruption greater than 10 nanoseconds (ref. EIA-364-87, Test condition D). 3. The LLCR and DWV shall be measured and recorded. 4. There shall be no visible wear-through of the connector contact gold plating under a magnification of 30-40X. 478 . ACCREDITED

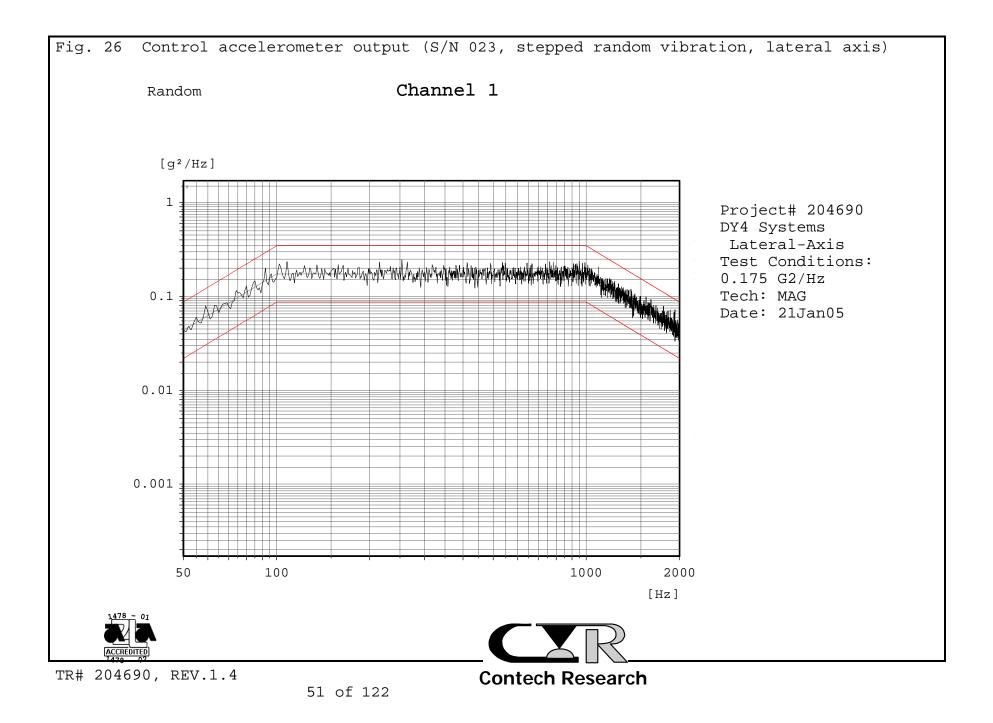


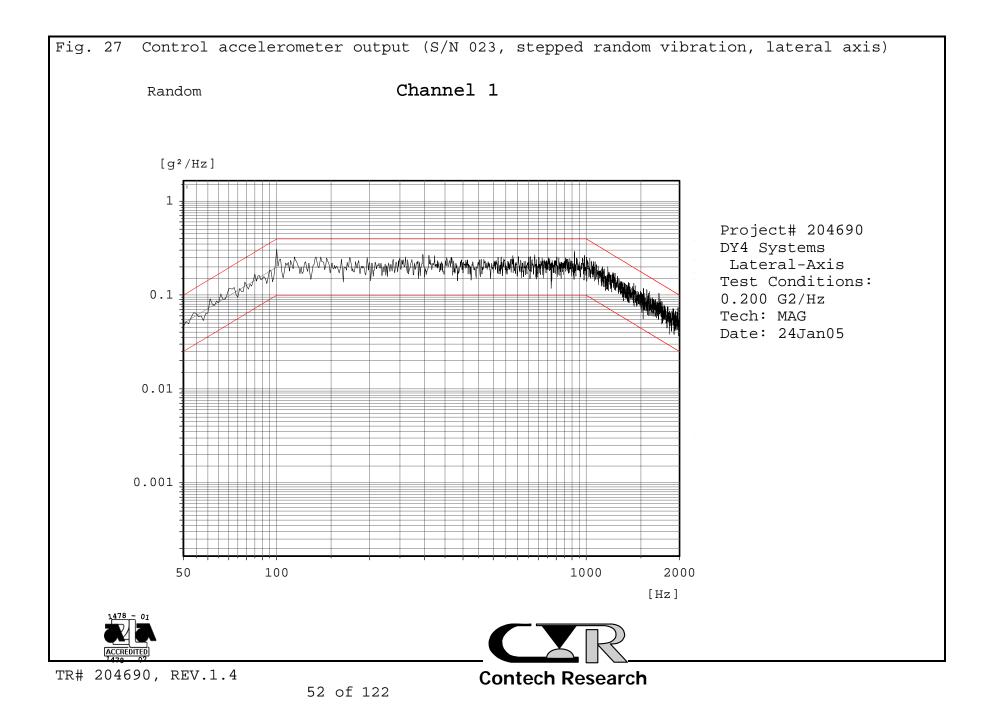

RANDOM VIBRATION HALT RESULTS/DISCUSSION: 1. There was no evidence of physical damage to the test samples. 2. There was no interruption greater than 10 nanoseconds. 3. See the LLCR and DWV sections for LLCR and DWV data (passed). 4. Visual Inspection was performed on the daughtercard connector blades by removing them from their housings. All blades that were measured for LLCR or monitored for interrupts were inspected. Two of the blades are shown below in Fig. 19. There was evidence of fretting wear, and in some spots gold wear-through, with the worst case showing fretting corrosion debris (P3-1 blade, top contact). SEM/EDS confirmed that gold wear-through had occurred to the nickel underplate. The contact with fretting corrosion debris was not being monitored for interrupts, nor measured for LLCR, so a determination of if or when it failed could not be made (also, note that only one of the two redundant contacts had fretting corrosion debris). Other contacts which showed gold wear-through, and were being monitored and measured, did not fail interrupt monitoring or LLCR. Using the visual inspection criteria of the VITA 46 Test Plan, the gold wear-through and fretting corrosion locations established that the vibration limit (for the test vehicle used) was between 0.1 G^2/Hz and 0.2 G^2/Hz , 50-2000 Hz, 1.5 hours/axis. The other criteria (LLCR and interrupt monitoring) give a higher vibration limit (i.e. $>0.2 G^2/Hz$). In an attempt to increase vibration life beyond the HALT stepped vibration levels/durations, the daughtercard connector is being made available with 50 microinches (nominal) of gold plating, compared to the 30 microinch (nominal) thickness used in this test. [Note that subsequent measurements showed that the actual average thickness was approximately 40 microinches]. The backplane connector already has 50 microinches (nominal) of gold in the contact area. In addition, other approaches can be used to increase vibration life. For example, increased stiffening of the plug-in module will reduce displacements under vibration. 478 - 01 ACCREDITED

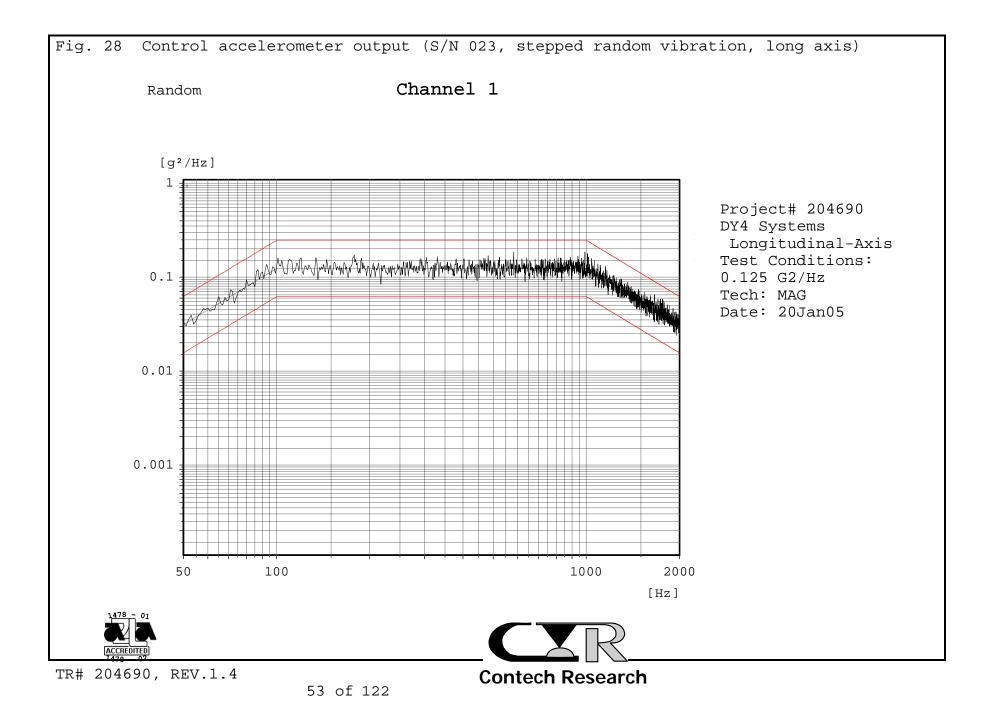


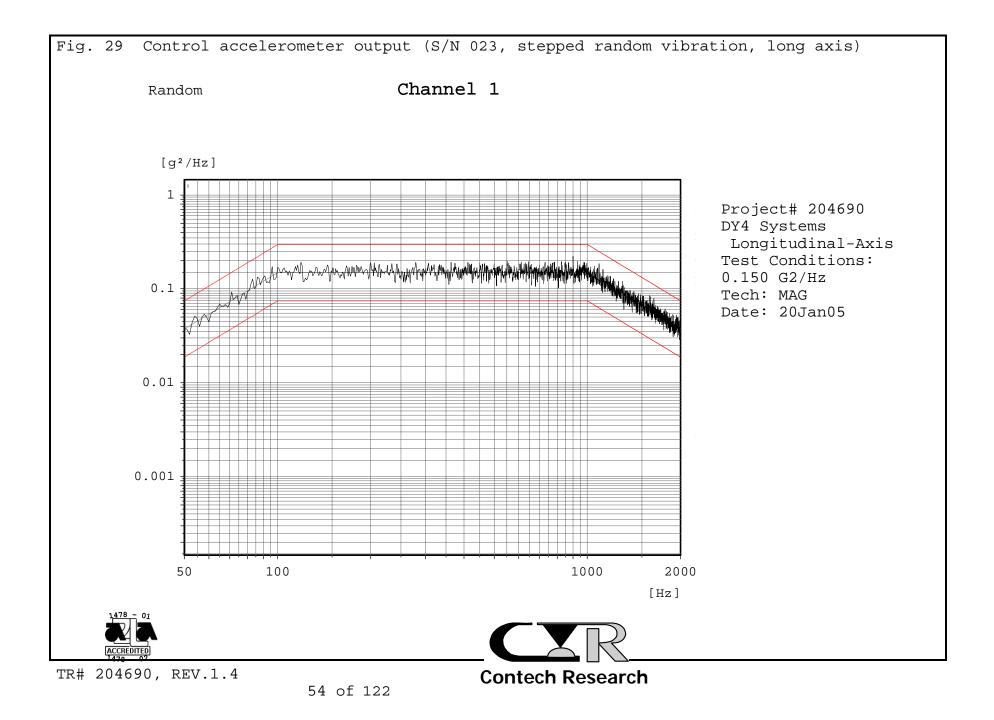


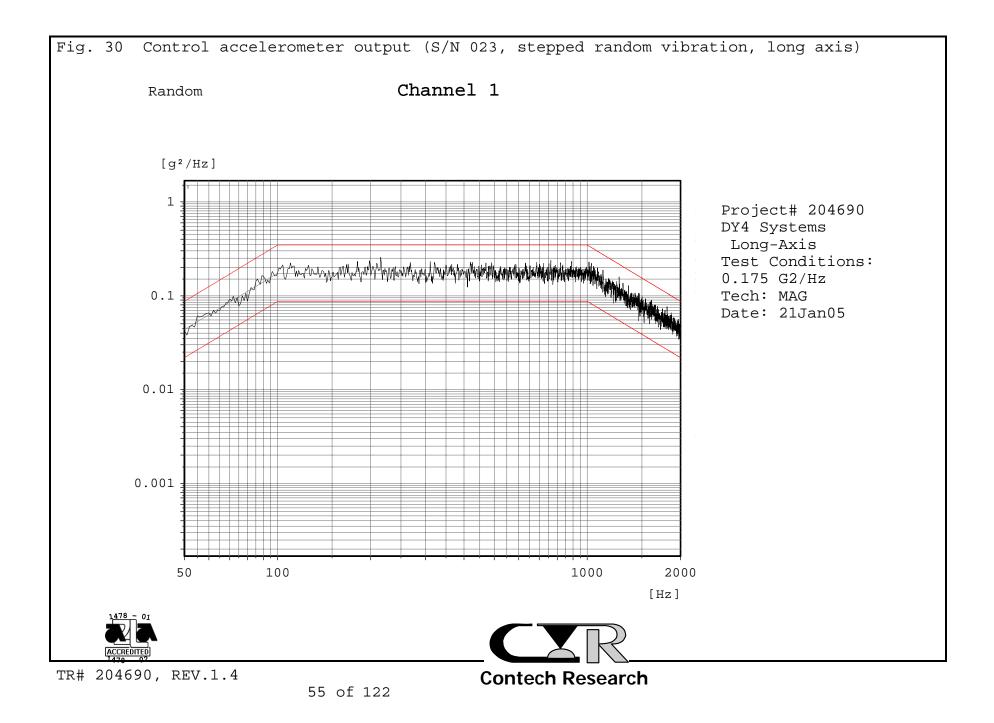


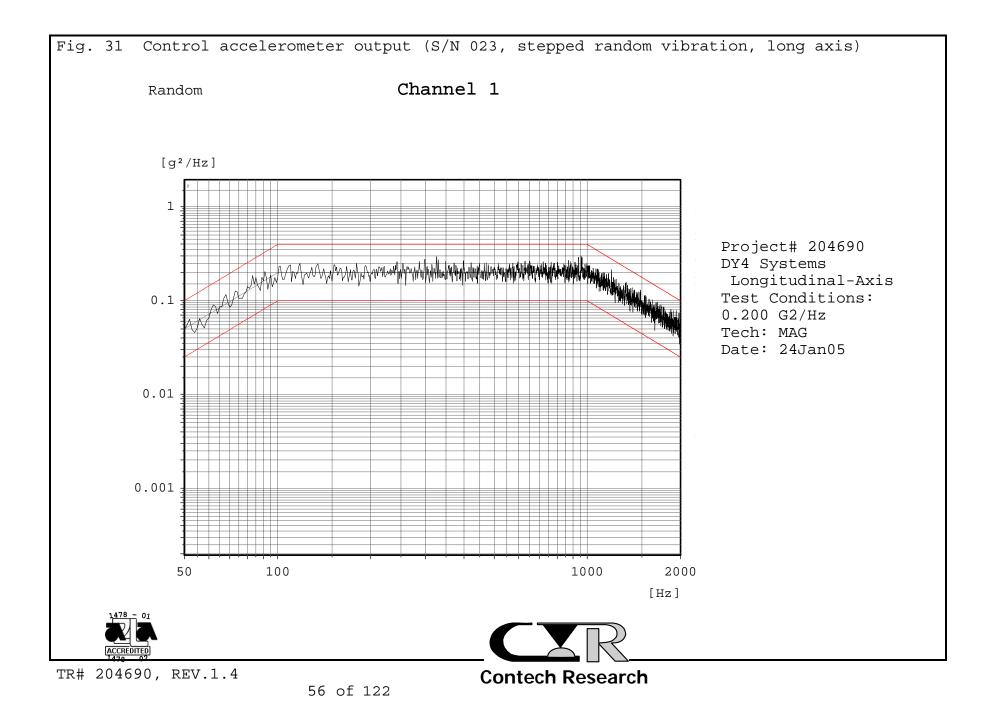












<u>GROUP B TESTING (Bench Handling</u> <u>& Vibration over Temperature)</u>

PROJECT NO.: 204690	SPECIFICATION: VITA 46
PART NO.: 027	PART DESCRIPTION: connector
SAMPLE SIZE: 1	TECHNICIAN: MAG
	COMPLETE DATE: 3-10-05
ROOM AMBIENT: 23 °C	
EQUIPMENT ID#: 673, 529	
LOW LEVEL CIRCUIT RESISTANCE (LLO	
PURPOSE:	
To evaluate contact resistance cl systems under conditions where ap not alter the physical contact in and films that degrade electrical sensitive to and may detect the p induced by mechanical or thermal significant loss of contact press PROCEDURE:	oplied voltages and currents do nterface and will detect oxides l stability. It is also presence of fretting corrosion environments as well as any
The test was performed in accordate the following conditions:	ance with EIA 364, TP 23 with
Test Current : Open Circuit Voltage : No. of Positions Tested :	
REQUIREMENTS:	
Low level circuit resistance shat prior to and after each environme vibration/temperature. Failure is 10 milliohms or greater.	ent, in this case
RESULTS:	
The LLCR data follows:	
ACCREDITED 1478 - 02 1478 - 02	
TR# 204690, REV.1.4	Contech Research

				values			
			units: m	illiohms			
Temp ⁰C	23	23	24				
R.H. %	18	18	20				
Date:	25Jan05	25Jan05	10Mar05				
Pos. ID	Initial	Bench	Vibe @	Pos. ID	Initial	Bench	Vibe @
		Handling	Temp				Temp
1	28.2	1.6	0.0	36	25.7	0.7	0.1
2	31.8	0.8	0.2	37	28.8	1.6	0.3
3	22.9	0.2	0.2	38	34.3	1.0	0.9
4	28.6	2.8	-0.5	39	23.5	1.0	0.0
5	31.4	0.5	0.2	40	34.8	0.3	0.4
6	26.0	3.6	0.1	41	26.6	0.6	0.1
7	31.3	1.2	0.6	42	33.4	-0.1	0.6
8	23.6	0.5	0.1	43	30.1	0.6	0.5
9	34.3	0.1	0.7	44	33.7	0.6	0.1
10	29.1	0.5	0.5	45	28.4	0.3	0.8
11	34.0	0.1	0.7	46	32.7	0.4	0.5
12	28.2	0.5	0.0	47	29.0	0.8	0.0
13	33.7	0.1	0.0	48	34.5	0.3	0.7
14	28.3	2.4	-0.3	49	33.9	0.9	0.3
15	33.5	0.5	0.9	50	33.6	0.2	0.8
16	34.5	0.2	0.1	51	37.2	0.3	0.5
17	34.3	0.5	0.8	52	29.3	0.4	0.6
18	37.4	0.2	1.1	53	36.6	-0.1	0.5
19	28.3	0.5	0.6	54	28.9	0.3	0.4
20	37.2	-0.1	0.5	55	37.5	1.0	0.5
21	28.3	0.5	0.9	56	29.7	0.5	0.6
22	37.9	0.4	0.6	57	39.3	0.4	0.3
23	28.9	0.8	0.9	58	26.2	1.1	0.3
24	39.6	0.3	0.4	59	31.8	0.1	0.2
25	22.9	0.7	0.2	60	25.1	0.4	-0.5
26	34.8	0.6	0.5	61	33.8	0.3	0.5
27	26.1	3.3	0.1	62	28.6	0.8	-0.4
28	31.7	0.5	0.5	63	24.4	0.6	0.2
29	27.8	1.1	0.2	64	33.8	0.4	0.5
30	25.8	0.6	0.1			• •	
31	31.9	0.3	0.6	MAX	39.6	3.6	1.1
32	28.6	0.6	0.0	MIN	22.9	-0.1	-0.5
33	28.5	1.6	-0.1	AVG	30.9	0.7	0.4
34	34.7	0.4	0.8	STD	4.2	0.7	0.3
35	25.7	0.7	0.1				
36	28.8	1.6	0.3				

Safety Ground

Actual values
units: milliohms

Temp ⁰C	23	23	24
R.H. %	18	18	20
Date:	25Jan05	25Jan05	10Mar05
Pos. ID	Initial	Bench	Vibe @
		Handling	Temp
1	0.40	0.36	0.29
2	0.40	5.83	0.24
3	0.88	0.29	0.19
MAX	0.9	5.8	0.3
MIN	0.4	0.3	0.2
AVG	0.6	2.2	0.2
STD	0.3	3.2	0.0
Open	0	0	0

PROJECT NO.: 204690	SPECIFICATION: VITA 46				
PART NO.: 027	PART DESCRIPTION: connector				
SAMPLE SIZE: 1	TECHNICIAN: MAG				
	COMPLETE DATE: 3-10-05				
ROOM AMBIENT: 23 °C	RELATIVE HUMIDITY: 20 %				
EQUIPMENT ID#: 673, 529					
DIELECTRIC WITHSTANDING VOLTAGE					
PURPOSE:					
To determine if the connectors integrity after being stressed environmental conditioning.					
PROCEDURE:					
1. The test was performed in acc Method 3001.	ordance with MIL-STD-1344,				
2. Test Conditions:					
Between Adjacent Contacts (c Between Rows Between Contacts and Hardwar Between Contacts and Shell Mated Condition Mounting Condition Hold Time Rate of Application Test Voltage	: No				
REQUIREMENTS:					
 When the specified test voltage is applied, there shall be no evidence of breakdown, arcing, etc. 					
2. The leakage current shall no	t exceed 5 ma.				
$\begin{array}{c} 1478 - 01 \\ \hline $	CZR				
TR# 204690, REV.1.4	Contech Research				

Г

Contech Research

RESULTS:

- 1. The test sample as tested met the requirements as specified.
- 2. The following is a summary of the observed data.

Sample ID	SN 027	SN 027	Sample ID	SN 027	SN 027	
J1 a1-b1	Pass	Pass	J6 a1-b1	Pass	Pass	
J1 e1-f1	Pass	Pass	J6 e1-f1	Pass	Pass	
J1 c2-d2	Pass	Pass	J6 c2-d2	Pass	Pass	
J1 g2-h2	Pass	Pass	J6 g2-h2	Pass	Pass	
J1 c8-d8	Pass	Pass	J6 c8-d8	Pass	Pass	
J1 g8-h8	Pass	Pass	J6 g8-h8	Pass	Pass	
J1 a9-b9	Pass	Pass	J6 a9-b9	Pass	Pass	
J1 e9-f9	Pass	Pass	J6 e9-f9	Pass	Pass	

PROJECT NO.: 204690	SPECIFICATION: VITA 46				
PART NO.: 027	PART DESCRIPTION: connector				
SAMPLE SIZE: 1	TECHNICIAN: MAG				
START DATE: 1-25-05	COMPLETE DATE: 1-25-05				
ROOM AMBIENT: 23 °C					
EQUIPMENT ID#: N/A					
MECHANICAL SHOCK (Bench Handli	.ng)				
PURPOSE:					
To determine the mechanical an connectors for use with electr shocks such as those expected	onic equipment subjected to				
PROCEDURE:					
Sample under test was raised on one edge using the opposite edge as a hinge 4 inches or 45 degrees whichever is less then released to drop on the bench top. The opposite and adjacent edges were repeated in a similar manner giving a total of 4 drops for the bottom plane.					
REQUIREMENTS:					
1. There shall be no evidence of sample as tested.	physical damage to the test				
2. The LLCR and DWV shall be mea	sured and recorded.				
BENCH HANDLING RESULTS:					
1. There was no evidence of phys	ical damage to the test sample.				
2. See the LLCR and DWV sections	for LLCR and DWV data (passed).				
<u>1478 - 01</u>					

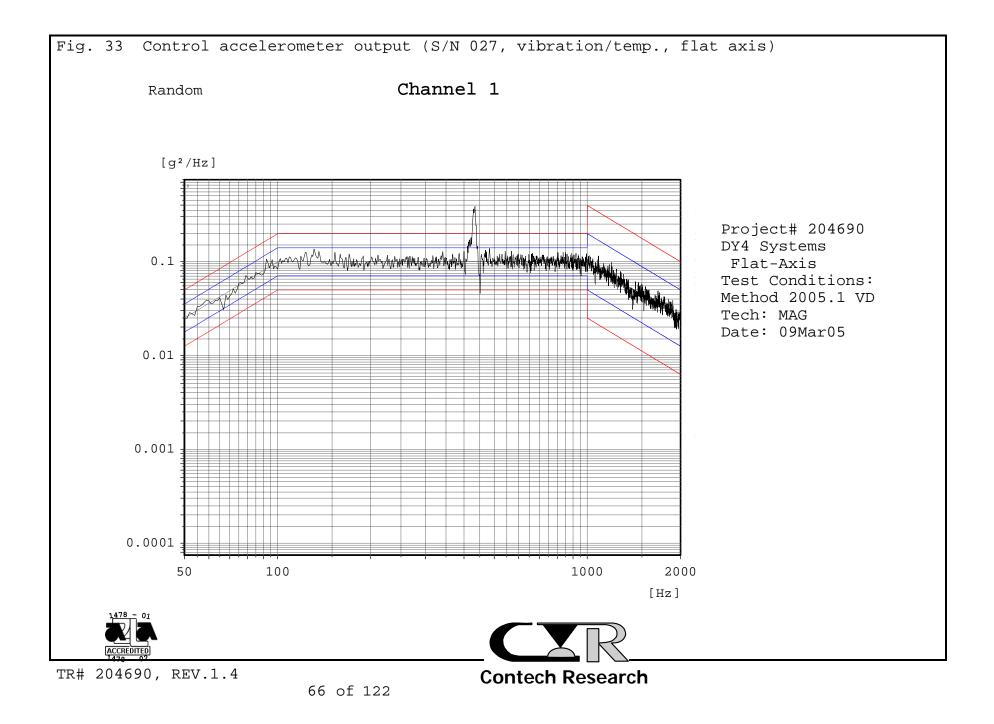
TR# 204690, REV.1.4

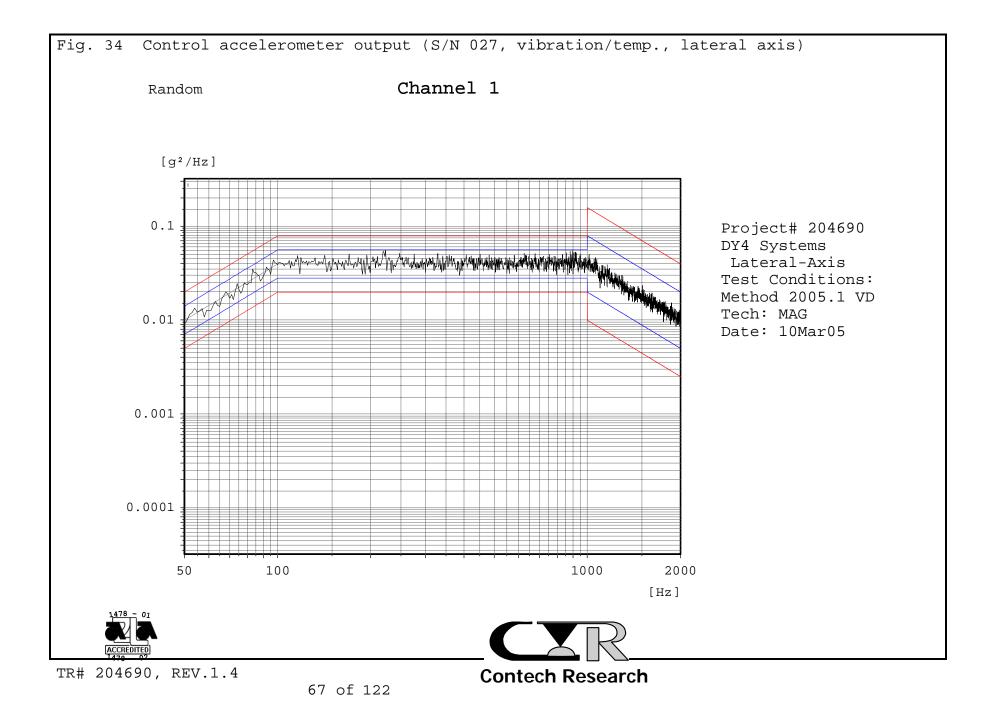
Contech Research

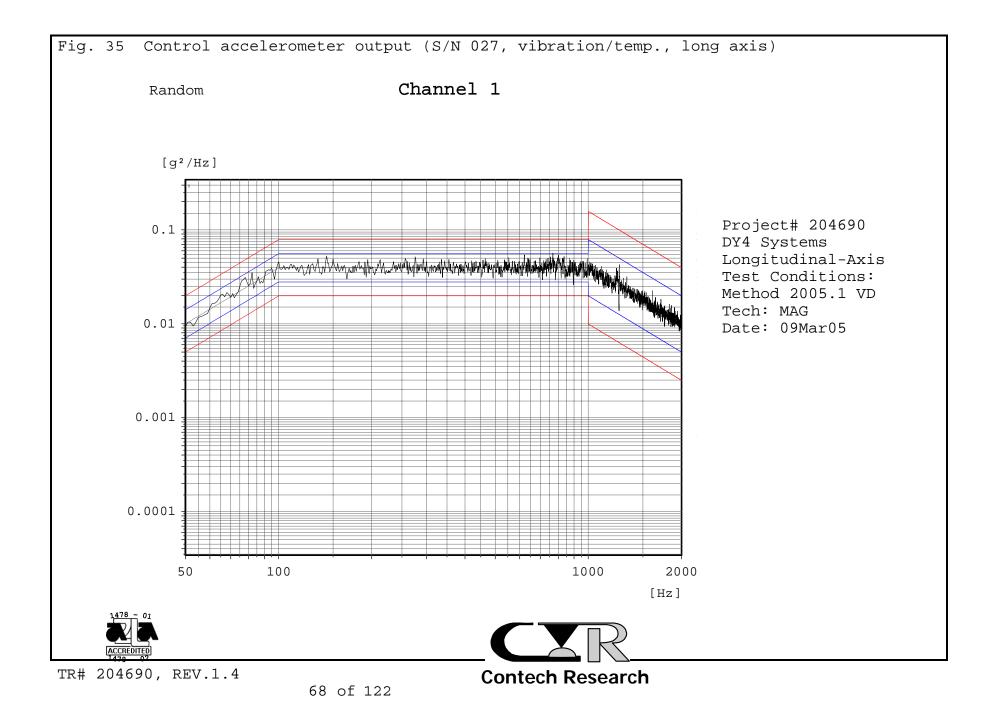
PROJECT NO.: 204690 SPECIFICATION: VITA 46 -----PART NO.: 027 PART DESCRIPTION: connector TECHNICIAN: MAG SAMPLE SIZE: 1 START DATE: 3-7-05 COMPLETE DATE: 3-10-05 ------RELATIVE HUMIDITY: 24 % ROOM AMBIENT: 24 EQUIPMENT ID#: 553, 1166, 1167, 1168, 1169, 1271, 1272, 1121 VIBRATION, RANDOM With Temperature Sweep PURPOSE: To evaluate the integrity of the test samples relative to a severe mechanical environment. ______ **PROCEDURE:** Test Conditions (ref. MIL-STD-1344A, Method 2005.1, Test Condition V, letter D): $0.1 \text{ g}^2/\text{Hz}$ max. Power Spectral Density 15-2000 Hz Frequency GRMS -40 to 100°C Temperature 1.5 hr per axis - 15 min Duration ramps, 30 min dwell 027 Samples **REQUIREMENTS:** 1. There shall be no evidence of physical damage to the test sample as tested. 2. There shall be no contact interruption greater than 10 nanoseconds (ref. EIA-364-87, Test condition D). 3. The LLCR and DWV shall be measured and recorded. 1478 - 01 ACCREDITED

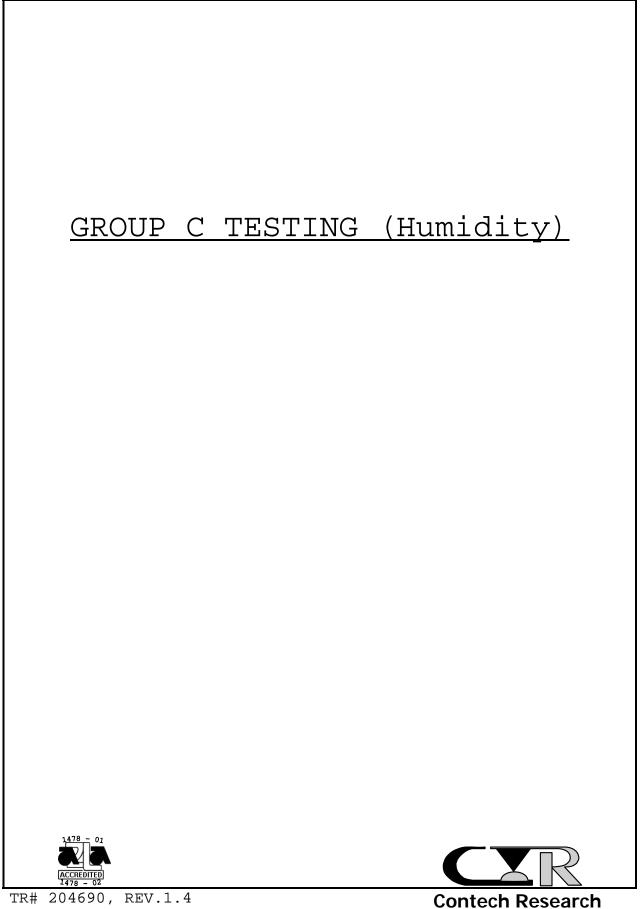
VIBRATION OVER TEMP. RESULTS:

- 1. There was no evidence of physical damage to the test sample as tested.
- 2. There was no interruption greater than 10 nanoseconds.
- 3. See the LLCR and DWV sections for LLCR and DWV data (passed).
- 4. Visual Inspection was performed on the daughtercard connector blades by removing them from their housings. Two of the blades are shown below. There was evidence of fretting wear, but none of the locations showed gold wearthrough.




Fig. 32 Connector blades after combined vibration/temperature




TR# 204690, REV.1.4

PROJECT NO.: 204690	SPECIFICATION: VITA 46
PART NO.: 024	PART DESCRIPTION: connector
SAMPLE SIZE: 1	TECHNICIAN: MAG
	COMPLETE DATE: 2-10-05
ROOM AMBIENT: 24 °C	RELATIVE HUMIDITY: 28 %
EQUIPMENT ID#: 207, 400, 673,	529
LOW LEVEL CIRCUIT RESISTANCE (LLC	<u>CR)</u>
PURPOSE:	
To evaluate contact resistance che systems under conditions where an not alter the physical contact in and films that degrade electrical sensitive to and may detect the pinduced by mechanical or thermal significant loss of contact press	oplied voltages and currents do nterface and will detect oxides l stability. It is also presence of fretting corrosion environments as well as any
PROCEDURE:	
The test was performed in accordate the following conditions:	ance with EIA 364, TP 23 with
Test Current : Open Circuit Voltage : No. of Positions Tested :	20mv
REQUIREMENTS:	
Low level circuit resistance shall prior to and after each environme humidity/temperature. Failure is 10 milliohms or greater.	ent, in this case
RESULTS:	
The LLCR data follows:	
$\frac{1478}{ACCREDITED}$	
TR# 204690, REV.1.4	Contech Research

Delta values units: milliohms

Temp ^o C R.H. % Date: Pos. ID	24 28 13Jan05 Initial	23 28 10Feb05 Humidity	Pos. ID	Initial	Humidity
1	28.8	-1.5	36	28.5	-0.8
2	31.9	-1.8	37	34.5	-1.0
3	24.1	-1.3	38	23.5	-1.0
4	29.1	-1.9	39	35.6	-1.4
5	31.8	-1.4	40	27.1	-1.6
6	25.8	-0.8	41	34.6	-1.7
7	32.7	-1.6	42	30.3	-1.1
8	23.5	-0.9	43	33.7	-1.2
9	34.7	-1.2	44	30.1	-1.0
10	30.0	-1.4	45	34.9	-1.6
11	34.7	-1.5	46	29.8	-0.9
12	29.5	-1.2	47	33.7	-0.5
13	35.2	-1.5	48	33.2	-1.0
14	29.0	-1.1	49	35.5	-0.6
15	35.3	-0.9	50	37.5	-1.2
16	34.1	-1.4	51	30.9	-1.3
17	35.3	-1.4	52	37.6	-1.4
18	37.8	-0.9	53	30.3	-0.7
19	30.0	-0.9	54	36.8	-0.8
20	37.8	-1.0	55	29.4	-0.8
21	29.7	-0.9	56	38.9	-0.7
22	37.3	-0.9	57	26.0	-0.7
23	29.1	-1.0	58	30.9	-0.6
24	39.5	-0.8	59	26.7	-2.1
25	22.8	-0.5	60	33.2	-0.6
26	34.1	-0.5	61	28.6	-1.1
27	27.0	-1.4	62	24.8	-0.8
28	31.6	-0.7	63	33.4	-0.5
29	27.9	-0.9	64	29.5	-1.2
30	27.0	-1.2			
31	31.6	-0.7	MAX	39.5	-0.5
32	30.0	-2.2	MIN	22.8	-2.2
33	28.9	-1.5	AVG	31.4	-1.1
34	34.3	-1.1	STD	4.1	0.4
35	27.0	-1.3	Open	0.0	0.0

TR# 204690, REV.1.4

			Delta values
			units: milliohms
Temp ⁰C	24	23	
R.H. %	28	28	
Date:	13Jan05	10Feb05	
Pos. ID	Initial	Humidity	
1	5.48	-5.14	
2	0.16	-0.04	
3	5.71	-5.11	
MAX	5.7	-0.04	
MIN	0.2	-5.14	
AVG	3.8	-3.43	
STD	3.1	2.93	
Open	0	0	

Safety Ground

Delta values

PROJECT NO.: 204690	SPECIFICATION: VITA 46
PART NO.: 024	PART DESCRIPTION: connector
SAMPLE SIZE: 1	TECHNICIAN: MAG
START DATE: 1-13-05	COMPLETE DATE: 2-10-05
Ŭ	RELATIVE HUMIDITY: 28 %
EQUIPMENT ID#: 321	
DIELECTRIC WITHSTANDING VOLTAGE	
PURPOSE:	
To determine if the connectors integrity after being stressed environmental conditioning.	
PROCEDURE :	
1. The test was performed in acc Method 3001.	ordance with MIL-STD-1344,
2. Test Conditions:	
Between Adjacent Contacts (c Between Rows Between Contacts and Hardwar Between Contacts and Shell Mated Condition Mounting Condition Hold Time Rate of Application Test Voltage	: No
REQUIREMENTS:	
 When the specified test volt no evidence of breakdown, ar 	age is applied, there shall be cing, etc.
2. The leakage current shall no	t exceed 5 ma.
$\begin{array}{c} 1478 & - & 01 \\ \hline $	
TR# 204690, REV.1.4	Contech Research

Contech Research

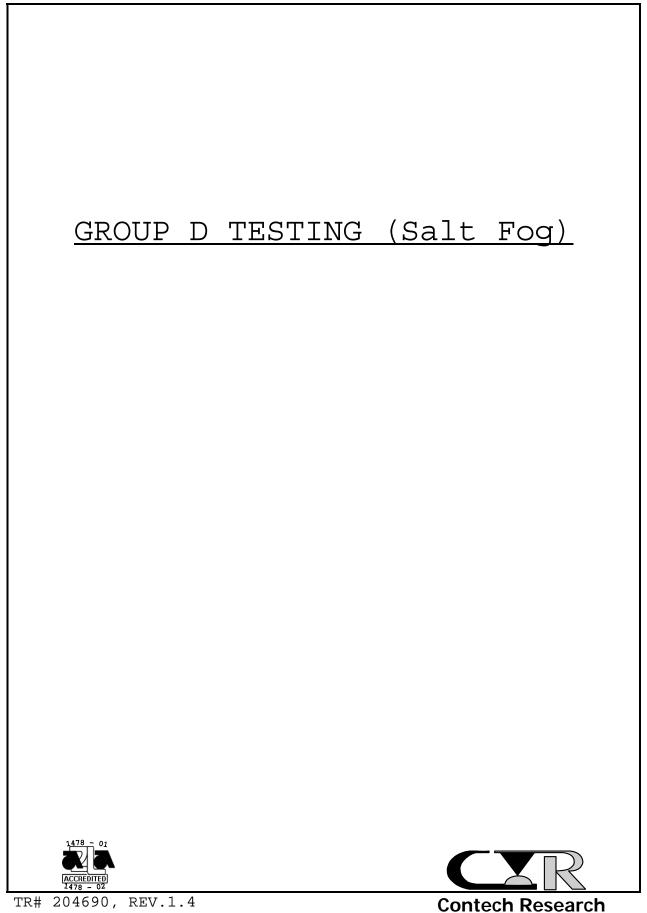
- 1. The test sample as tested met the requirements as specified.
- 2. The following is a summary of the observed data.

Sample ID	SN 024	SN 024	Sample ID	SN 024	SN 024	
J1 a1-b1	Pass	Pass	J6 a1-b1	Pass	Pass	
J1 e1-f1	Pass	Pass	J6 e1-f1	Pass	Pass	
J1 c2-d2	Pass	Pass	J6 c2-d2	Pass	Pass	
J1 g2-h2	Pass	Pass	J6 g2-h2	Pass	Pass	
J1 c8-d8	Pass	Pass	J6 c8-d8	Pass	Pass	
J1 g8-h8	Pass	Pass	J6 g8-h8	Pass	Pass	
J1 a9-b9	Pass	Pass	J6 a9-b9	Pass	Pass	
J1 e9-f9	Pass	Pass	J6 e9-f9	Pass	Pass	

PROJECT NO.: 205690	SPECIFICATION: VITA 46
PART NO.: 024	PART DESCRIPTION: Connector
SAMPLE SIZE: 1	TECHNICIAN: MAG
START DATE: 1-28-05	COMPLETE DATE: 2-10-05
ROOM AMBIENT: 24 °C	RELATIVE HUMIDITY: 19 %
EQUIPMENT ID#: 27, 1230	
HUMIDITY (THERMAL CYCLING)	
PURPOSE:	
To evaluate the impact on elec system when exposed to any env thermal/moisture type failure	
 a) Fretting corrosion due t micromotion, induced by accelerates the oxidation 	thermal cycling. Humidity
	s or from particulates from the which may have become entrapped surfaces.
c) Failure mechanisms resul process.	lting from a wet oxidation
PROCEDURE:	
1. The test environment was per MIL-STD-1344, Method 1002, P	
Relative Humidity Temperature Conditions Number of Cycles Mating Conditions Mounting Conditions Duration	: 85% to 95% : 28°C to 71°C : 10 : mated : N/A : 240 hours

TR# 204690, REV.1.4

ACCREDITED


Contech Research

REQUIREMENTS:

1	. There shall be no evidence of physical damage to the test samples as tested.
2	. The LLCR and DWV shall be measured and recorded.
RI	ESULTS:
1	. There was no evidence of physical damage to the test sample as tested.
2	. See the LLCR and DWV sections for LLCR and DWV data (passed)

77 of 122

CONCELLINGS

PROJECT NO.: 204690	SPECIFICATION: VITA 46
PART NO.: 035	PART DESCRIPTION: connector
SAMPLE SIZE: 1	TECHNICIAN: MAG
START DATE: 1-13-05	COMPLETE DATE: 2-8-05
ROOM AMBIENT: 24 °C	RELATIVE HUMIDITY: 28 %
EQUIPMENT ID#: 207, 400	
LOW LEVEL CIRCUIT RESISTANCE (LL	<u>CR)</u>
PURPOSE:	
To evaluate contact resistance cl systems under conditions where ap not alter the physical contact in and films that degrade electrical sensitive to and may detect the p induced by mechanical or thermal significant loss of contact press	pplied voltages and currents do nterface and will detect oxides l stability. It is also presence of fretting corrosion environments as well as any
PROCEDURE:	
The test was performed in accordate the following conditions:	ance with EIA 364, TP 23 with
Test Current : Open Circuit Voltage : No. of Positions Tested :	20mv
REQUIREMENTS:	
Low level circuit resistance sha prior to and after each environm Failure is defined as a LLCR inc greater.	ent, in this case salt spray.
RESULTS:	
The LLCR data follows:	
$\frac{1478}{1478} = 01$	
TR# 204690, REV.1.4	Contech Research

Delta values units: milliohms

Temp ºC R.H. % Date:	24 28 13Jan0 5	24 21 08Feb0 5			
Pos. ID	Initial	Salt Spray	Pos. ID	Initial	Salt Spray
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 29 30 31 32 33	$\begin{array}{c} 29.2\\ 31.3\\ 24.0\\ 27.3\\ 31.0\\ 26.6\\ 33.7\\ 23.7\\ 33.5\\ 28.7\\ 34.1\\ 29.7\\ 34.1\\ 29.7\\ 34.1\\ 29.7\\ 34.1\\ 29.7\\ 34.4\\ 36.6\\ 34.7\\ 38.4\\ 29.3\\ 38.4\\ 29.5\\ 28.7\\ 35.0\\ 27.5\\ 32.5\\ 28.4\\ 26.7\\ 31.8\\ 27.8\\ 28.5\\$	-1.5 -0.9 -1.1 -1.2 -1.5 -1.0 -1.8 -0.9 -0.3 -0.5 -0.9 -0.7 -0.8 -0.5 -1.0 -0.7 -0.3 -0.6 -1.0 -0.7 -0.3 -0.6 -1.0 -0.7 -0.3 -0.6 -1.0 -0.7 -0.3 -0.6 -1.0 -0.7 -0.8 -0.7 -0.8 -0.7 -0.8 -0.7 -0.8 -0.7 -0.8 -0.7 -0.8 -0.7 -0.8 -0.7 -0.8 -0.7 -0.8 -0.7 -0.8 -0.7 -0.8 -0.7 -0.8 -0.7 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.7 -0.8 -0.8 -0.8 -0.8 -0.7 -0.8 -0.8 -0.8 -0.7 -0.8 -0.8 -0.8 -0.7 -0.8	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 45 56 57 58 59 60 61 62 63 64 MAX MIN AVG	29.8 32.9 23.7 36.8 26.9 33.8 29.4 33.7 30.3 33.2 29.3 34.4 34.7 39.0 30.0 38.5 29.7 36.3 29.6 37.9 27.4 32.2 25.7 34.6 29.2 24.6 34.0 28.6 39.6 23.7 31.3	$\begin{array}{c} -1.5 \\ -1.0 \\ -0.5 \\ -2.2 \\ -1.0 \\ -1.0 \\ -0.7 \\ -0.8 \\ -0.9 \\ -0.3 \\ -0.3 \\ -0.3 \\ -0.3 \\ -0.3 \\ -0.3 \\ -0.3 \\ -0.3 \\ -0.5 \\ -1.4 \\ -0.6 \\ -0.7 \\ -0.8 \\ -1.1 \\ -0.9 \\ -0.7 \\ -0.8 \\ -1.1 \\ -0.9 \\ -0.7 \\ -0.6 \\ -0.7 \\ -0.9 \\ -1.4 \\ -0.6 \\ -0.2 \\ -3.0 \\ -0.9 \end{array}$
34 35	35.5 26.3	-1.6 -0.6	STD	4.2	0.5

			units: milliohms
Temp ºC R.H. % Date: Pos. ID	24 28 13Jan05 Initial	24 21 08Feb05 Salt Spray	
1	0.28	0.27	
2	5.71	-5.43	
3	0.64	-0.30	
MAX	5.7	0.27	
MIN	0.3	-5.43	
AVG	2.2	-1.82	
STD	3.0	3.14	
Open	0	0	

Safety Ground

Delta values

PROJECT NO.: 204690	SPECIFICATION: VITA 46
PART NO.: 035	PART DESCRIPTION: connector
SAMPLE SIZE: 1	TECHNICIAN: MAG
	COMPLETE DATE: 2-8-05
ROOM AMBIENT: 24 °C	RELATIVE HUMIDITY: 24 %
EQUIPMENT ID#: 321	
DIELECTRIC WITHSTANDING VOLTAGE	
PURPOSE:	
To determine if the connectors integrity after being stressed environmental conditioning.	
PROCEDURE:	
1. The test was performed in acc	ordance with MIL-STD-1344
Method 3001.	ordanice wren Arn 515 1511,
2. Test Conditions:	
Between Adjacent Contacts (c Between Rows Between Contacts and Hardwar Between Contacts and Shell Mated Condition	: No
Mounting Condition	: Mounted
Hold Time Rate of Application	: 60 sec. : 500 volts/sec.
Test Voltage	: 500
REQUIREMENTS:	
 When the specified test volt no evidence of breakdown, are 	age is applied, there shall be cing, etc.
2. The leakage current shall no	t exceed 5 ma.
$ \begin{array}{c} 1478 - 01 \\ \hline ACCREDITED \\ 1478 - 02 \end{array} $	
TR# 204690, REV.1.4	Contech Research

1. 6 of 16 DWV measurement locations failed due to high leakage current.

Sample ID	SN 035	SN 035	 Sample ID	SN 035	SN 035	
J1 a1-b1	Pass	Fail	J6 a1-b1	Pass	Pass	
J1 e1-f1	Pass	Pass	J6 e1-f1	Pass	Pass	
J1 c2-d2	Pass	Pass	J6 c2-d2	Pass	Pass	
J1 g2-h2	Pass	Fail	J6 g2-h2	Pass	Pass	
J1 c8-d8	Pass	Fail	J6 c8-d8	Pass	Pass	
J1 g8-h8	Pass	Fail	J6 g8-h8	Pass	Pass	
J1 a9-b9	Pass	Fail	J6 a9-b9	Pass	Pass	
J1 e9-f9	Pass	Fail	J6 e9-f9	Pass	Pass	

2. The following is a summary of the observed data.

3. Visual inspection results showed that the DWV failures were caused by salt bridges (see below)

Fig. 36 Connector blades after 500 hr. salt fog

PROJECT NO.: 205690 SPECIFICATION: VITA 46 PART NO.: 035 PART DESCRIPTION: Connector SAMPLE SIZE: 1 TECHNICIAN: MAG START DATE: 1-17-05 COMPLETE DATE: 2-7-05 C RELATIVE HUMIDITY: 28 % ROOM AMBIENT: 24 °C -----EQUIPMENT ID#: 118, 624, 550, 682, 1352 _____ SALT SPRAY PURPOSE: To expose test samples to an environment simulating a marine atmosphere. _____ _____ PROCEDURE: 1. The test environment was performed in accordance MIL-STD-1344, Method 1001, Test Condition C. 2. Test Conditions: Salt Solution: 5%Temperature: 95°Duration: 500 : 95°F +2°F/−3°F Duration : 500 Hours : Yes Post Cleaning Mated Condition : mated Mounting Condition : N/A Collection Rate : 2.13 ml/hr actual (Spec 0.5 to 3.0 ml/hr) pH at Temp. : 6.5 actual (Spec. 6.5-7.2) _____ **REQUIREMENTS:** 1. There shall be no evidence of physical damage to the test sample as tested. 2. The LLCR and DWV shall be measured and recorded. 478

1. There was no evidence of corrosion of the connectors, however heavy salt deposits were present (see Fig. 37 below).

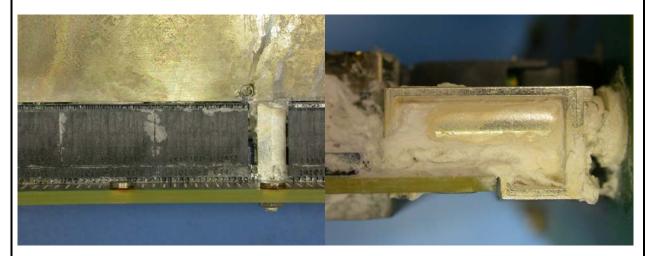


Fig. 37 VITA 46 test module after 500 hr. salt fog

2. See the LLCR and DWV sections for LLCR and DWV data.

DISCUSSION:

As a result of the DWV failures, the salt spray test was deemed to have been failed. The DWV failure was discussed in the VITA 46 Standard committee, and it was felt that the test methodology was overly severe in two areas:

1. The 500 hour duration was considered excessive, particularly in comparison with MIL-STD-810F, which calls for a standard exposure duration of 48 hours.

2. The fact that no enclosure was used was considered not representative of an actual deployed situation. In that case, the daughtercard and backplane are contained in a chassis, which provides a level of protection against the salt spray.


It was decided to re-do the salt test with a new test sample. Consideration for the methodology was given to MIL-STD-810F and to ASTM G85, Annex A.4 (salt fog and SO2 test suggested by Raytheon). The ASTM G85 test was chosen. Also, an enclosure was built to simulate the effect of a chassis during the re-test.

TR# 204690, REV.1.4

Contech Research

SCOPE

To perform salt fog/SO_2 testing on product submitted by the primary test sponsor, Curtiss-Wright Controls Embedded Computing.

APPLICABLE DOCUMENTS

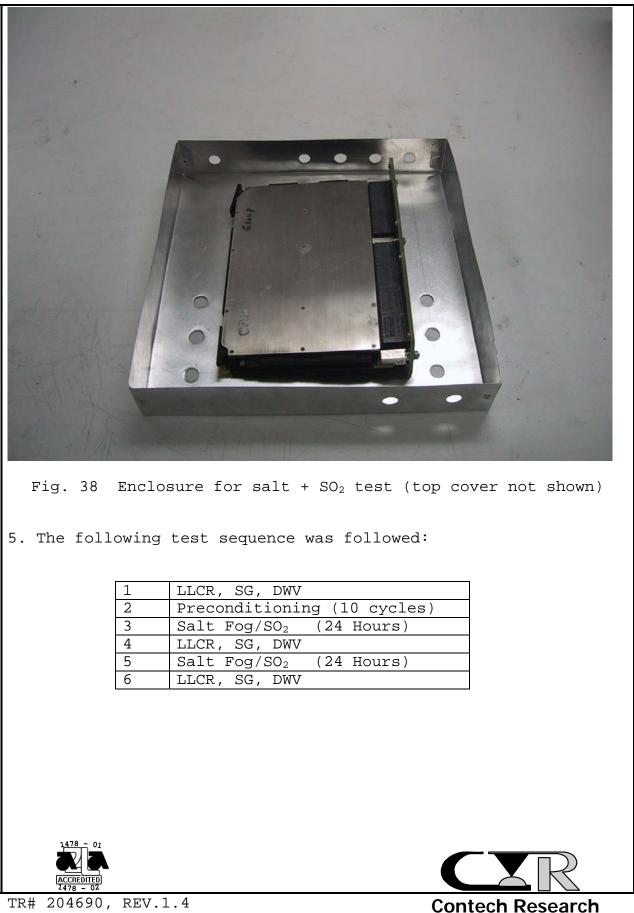
Unless otherwise specified, the following documents of issue in effect at the time of testing performed form a part of this report to the extent as specified herein. The requirements of sub-tier specifications and/or standards apply only when specifically referenced in this report.

ASTM G85 (Annex A4, cycle A4.4.1)

TEST SAMPLES AND PREPARATION

 The following test samples were submitted by the test sponsor, Curtiss-Wright, for the evaluation to be performed by Contech Research, Inc.

Qty


Description

1 Test Board (VITA 46)

- 2. Unless otherwise indicated, all materials were certified by the manufacturer to be in accordance with the applicable product specification.
- 3. The test samples as submitted were certified by the manufacturer as being fabricated and assembled utilizing normal production techniques common for this type of product and inspected in accordance with the quality criteria as established for the product involved.
- 4. The test sample was tested in its 'as received' condition, using an enclosure as shown below (top cover not shown).

PROJECT NO.: 205199-1	SPECIFICATION: ASTM G85
SAMPLE SIZE: 1	TECHNICIAN: MAG
	COMPLETE DATE: 5-23-05
ROOM AMBIENT: 24 °C	RELATIVE HUMIDITY: 20` %
EQUIPMENT ID#: 682, 118, 280	
SALT FOG/SO2	
PURPOSE:	
To evaluate the product's imm	unity to an accelerated corrosion.
PROCEDURE:	
1. The test environment was per ASTM G85.	rformed in accordance with
REQUIREMENTS:	
1. The safety ground LLCR shal	l be measured and recorded
	y voltage when measured at 500VAC preakdown, or leakage current
3. The LLCR of the mating conn recorded.	nectors shall be measured and
RESULTS: See Next Page	
ACCREDITED 1478 - 02	
TR# 204690, REV.1.4	Contech Research

Т

1. The safety ground LLCR follows:

Actual values units: milliohms

Temp °C	23	24	24
R.H. %	35	45	44
Date:	29Apr05	27May05	23Jun05
Pos. ID	Initial	Salt/SO2	Salt/SO2
1	0.32	0.27	0.33
2	0.17	6.69	0.58
3	5.33	0.20	0.33
MAX	5.3	6.7	0.6
MIN	0.2	0.2	0.3
AVG	1.9	2.4	0.4
STD	2.9	3.7	0.1
Open	0	0	0

2. There was no evidence of arcing, breakdown, or leakage current when DWV was measured at 500VAC.

3. The LLCR of the mating connectors follows: Delta values units: milliohms Date: 29Apr05 27May05 23Jun05 Pos. ID Initial Salt/SO2 Salt/SO2 1 27.6 -0.9 -0.8 -0.8 2 31.0 -0.7 3 23.1 -0.5 -0.44 28.1 -0.9 -0.7 5 30.9 -0.7 -0.7 б 25.9 -0.6 -0.8 7 33.4 -2.1-2.18 23.4 -0.5 -0.8 9 34.0 -0.8 -0.6 10 28.5 -0.5 -0.6 11 33.6 -0.4-0.5 12 28.9 -0.5 -0.1 33.4 -0.2 13 -0.4 14 27.0 -0.5 -0.415 33.7 0.0 0.0 16 33.6 -0.5 -0.6 17 34.2 -0.2 0.0 37.6 18 -0.2 -0.419 29.3 -0.5 -0.2 20 38.6 -0.5 -0.5 21 29.7 -0.5 -0.437.0 -0.1 22 0.0 23 28.3 -0.1 0.0 24 38.6 -0.3 -0.225 22.9 -0.5 0.1 33.0 -0.3 -0.1 26 25.9 -0.5 -0.3 27 28 32.4 -0.6 -0.429 28.7 -0.5 -0.8 30 26.5 -0.7-0.231 31.1 -0.2 0.1 32 28.5 -0.6 -0.429.4 -1.1 33 -1.2 34 34.2 -0.6 -0.8 25.9 -0.5 35 -0.6

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	34.6 23.5 35.9 27.0 33.2 28.8 33.7 29.1 33.4 27.3 33.6 32.9 34.5 36.9 29.8 37.7 29.9 34.5 36.9 29.8 37.7 29.9 36.7 28.7 38.6 25.7 30.5 24.2	$\begin{array}{c} -0.8\\ -1.2\\ -0.7\\ -1.4\\ -1.4\\ -0.1\\ -0.4\\ -0.8\\ 0.0\\ -0.6\\ 0.1\\ -0.1\\ -0.1\\ -0.1\\ -0.6\\ -0.1\\ -0.4\\ -0.3\\ -0.2\\ -0.3\\ -0.2\\ -0.3\\ 0.2\\ -1.2\\ -0.4\\ -0.4\\ -0.4\\ -0.5\end{array}$	$\begin{array}{c} -0.9\\ -1.1\\ -0.6\\ -1.4\\ -1.4\\ -0.1\\ 0.0\\ -0.8\\ -0.1\\ -0.4\\ 0.1\\ -0.4\\ 0.1\\ 0.1\\ -0.3\\ -0.2\\ -0.4\\ -0.1\\ 0.0\\ 0.4\\ -0.2\\ 0.1\\ -0.6\\ -0.3\\ -0.3\\ 0.0\\ -0.3\end{array}$
51 52 53 54 55 56 57 58 59	29.8 37.7 29.9 36.7 28.7 38.6 25.7 30.5 24.2 34.3 28.3 24.3 33.1	-0.3 -0.2 -0.3 -0.3 0.2 -1.2 -0.4 -0.4	-0.1 0.0 0.4 -0.2 0.1 -0.6 -0.3 -0.3 0.0
MAX MIN AVG STD	38.6 22.9 30.8 4.2	0.2 -2.1 -0.5 0.4	0.4 -2.1 -0.4 0.4

4. Visual inspection showed considerably less salt deposits than for the UUT that underwent the 500 hour salt test. There was no evidence of corrosion on the connectors or on metal surfaces, and no salt bridges were present on the connector blades or backplane connector contacts (see below).

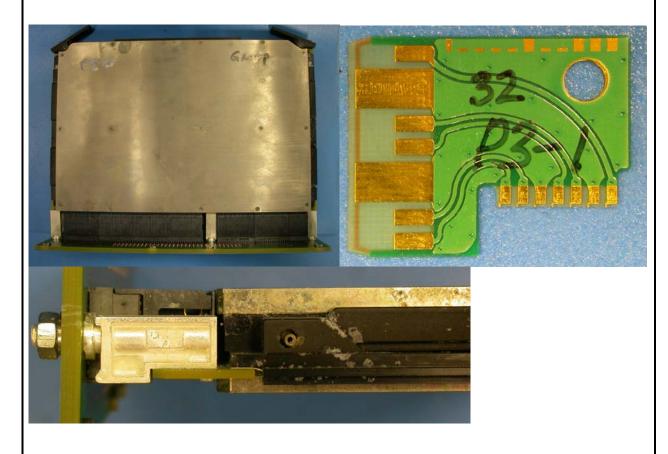
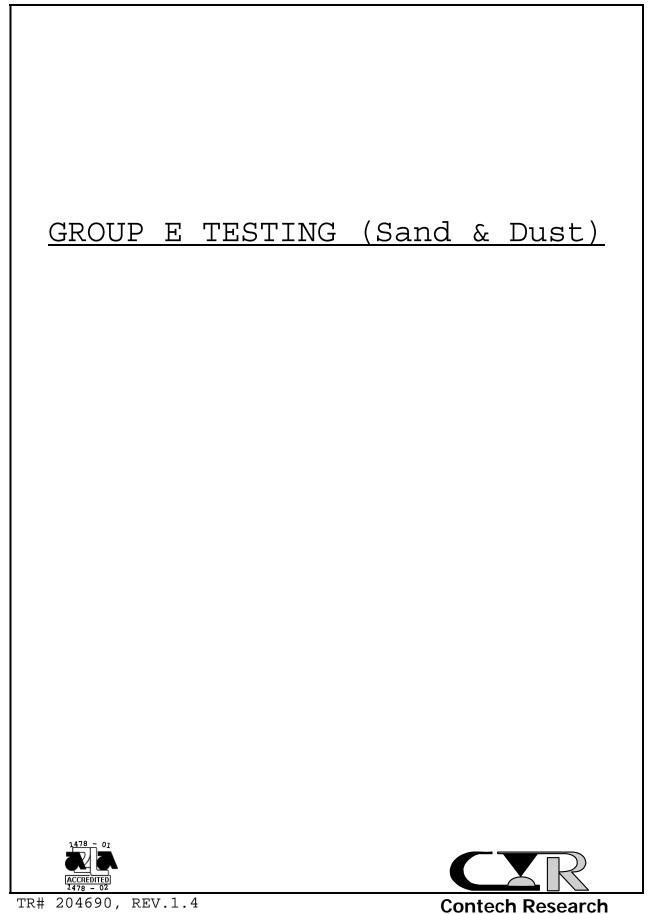



Fig. 39 VITA 46 test module after salt + SO_2

93 of 122

PROJECT NO.: 204690	SPECIFICATION: VITA 46
PART NO.: 030	PART DESCRIPTION: connector
SAMPLE SIZE: 1	TECHNICIAN: MAG
START DATE: 1-26-05	COMPLETE DATE: 2-8-05
ROOM AMBIENT: 24 °C	RELATIVE HUMIDITY: 18 %
EQUIPMENT ID#: 677, 476	
LOW LEVEL CIRCUIT RESISTANCE (LLC	<u>CR)</u>
PURPOSE:	
To evaluate contact resistance cl systems under conditions where ap not alter the physical contact in and films that degrade electrical sensitive to and may detect the p induced by mechanical or thermal significant loss of contact press	oplied voltages and currents do nterface and will detect oxides l stability. It is also presence of fretting corrosion environments as well as any
PROCEDURE:	
The test was performed in accordathe following conditions:	ance with EIA 364, TP 23 with
Test Current : Open Circuit Voltage : No. of Positions Tested :	
REQUIREMENTS:	
Low level circuit resistance sha prior to and after each environme Failure is defined as LLCR increa	ent, in this case sand and dust.
RESULTS:	
The LLCR data follows:	
$\begin{array}{c} 1478 - 01 \\ \hline $	
TR# 204690, REV.1.4	Contech Research

				values			
			units: m	illionms			
Temp ⁰C	24	24	24				
R.H. %	18	20	21				
Date:	26Jan05	03Feb05	08Feb05				
Pos. ID	Initial	Dust	Sand	Pos. ID	Initial	Dust	Sand
1	27.8	3.9	2.2	36	28.8	1.7	-0.2
2	31.0	2.0	0.5	37	34.1	0.0	1.8
3	24.1	0.4	2.9	38	23.0	-0.2	0.8
4	29.0	1.8	-0.5	39	34.7	0.7	-0.5
5	31.5	0.5	0.6	40	26.5	1.7	0.9
6	26.1	0.3	0.8	41	33.6	6.1	1.3
7	31.8	0.1	0.8	42	29.3	1.6	0.5
8	23.3	0.5	1.5	43	32.9	1.1	0.8
9	34.2	4.5	0.8	44	30.0	0.4	0.2
10	29.1	0.9	0.9	45	34.0	0.6	-0.1
11	33.5	1.9	0.0	46	29.4	0.2	0.3
12	29.4	1.8	0.8	47	34.2	0.8	-0.1
13	33.3	7.2	1.2	48	34.0	3.1	-0.7
14	28.5	2.4	0.6	49	34.5	0.1	0.3
15	34.2	0.9	0.0	50	37.5	0.9	0.3
16	34.0	4.0	0.4	51	29.8	1.6	0.3
17	35.0	-0.1	-0.2	52	38.7	1.5	0.0
18	38.2	0.0	0.2	53	31.1	0.7	0.8
19	29.1	2.0	0.3	54	37.2	0.9	1.9
20	38.7	4.1	1.5	55	28.7	1.1	0.3
21	30.4	0.1	0.1	56	37.6	1.3	0.4
22	37.7	1.8	1.7	57	27.0	0.7	0.2
23	28.6	2.0	0.9	58	31.6	0.6	-0.7
24	38.7	0.3	-0.1	59	24.5	0.7	0.5
25	24.0	0.0	0.0	60	33.5	0.6	0.3
26	34.7	-0.3	0.0	61	28.7	1.4	0.5
27	26.1	1.7	0.2	62	24.3	0.2	0.4
28	32.0	0.3	0.4	63	33.8	-0.2	-1.0
29	28.1	-0.2	1.3	64	28.8	0.8	1.4
30	26.3	0.6	0.6				
31	31.5	0.8	0.3	MAX	38.7	7.2	3.1
32	28.6	0.8	1.1	MIN	23.0	-0.3	-1.0
33	28.7	2.0	3.1	AVG	31.1	1.3	0.6
34	33.9	0.3	0.4	STD	4.1	1.5	0.8
35	27.9	0.4	0.9	Open	0.0	0.0	0.0

Safety Ground						
Product:	SN 030			File #:	Safety Gnd	
Descriptio n:	VITA 46 M Qual	odule			Ghu	
Open circuit		20mv		Current:	100ma	
			Delta values units: milliohms			
Temp ⁰C	24	24	24			
R.H. %	18 20 Jan 05	20 025ab05	21 005-b05			
Date: Pos. ID	26Jan05 Initial	03Feb05 Dust	08Feb05 Sand			
F05. ID	IIIIIdi	Dusi	Sanu			
1	0.24	0.06	0.04			
2	0.20	576.72	5.08			
3	0.60	-0.26	-0.36			
MAX	0.6	576.72	5.08			
MIN	0.2	-0.26	-0.36			
AVG	0.3	192.17	1.59			
STD	0.2	333.02	3.03			
Open	0	0	0			

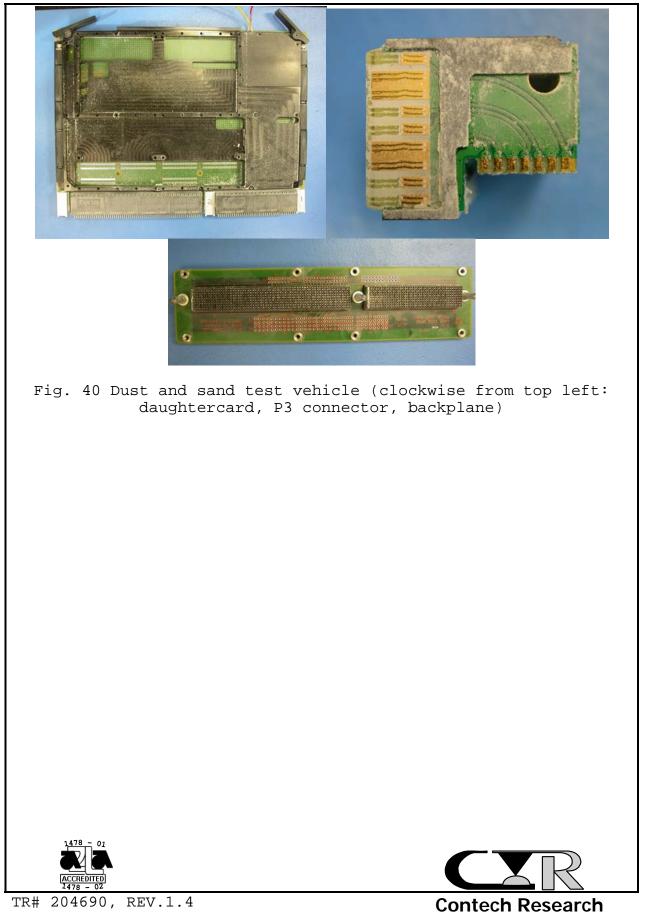
Note: The out of specification reading above (577 milliohms) was deemed to be erroneous due to the inconsistency of the method used on the alignment module, i.e. the test technician complained about the difficulty of maintaining good contact between the probe and the middle alignment module (pos. ID 2).

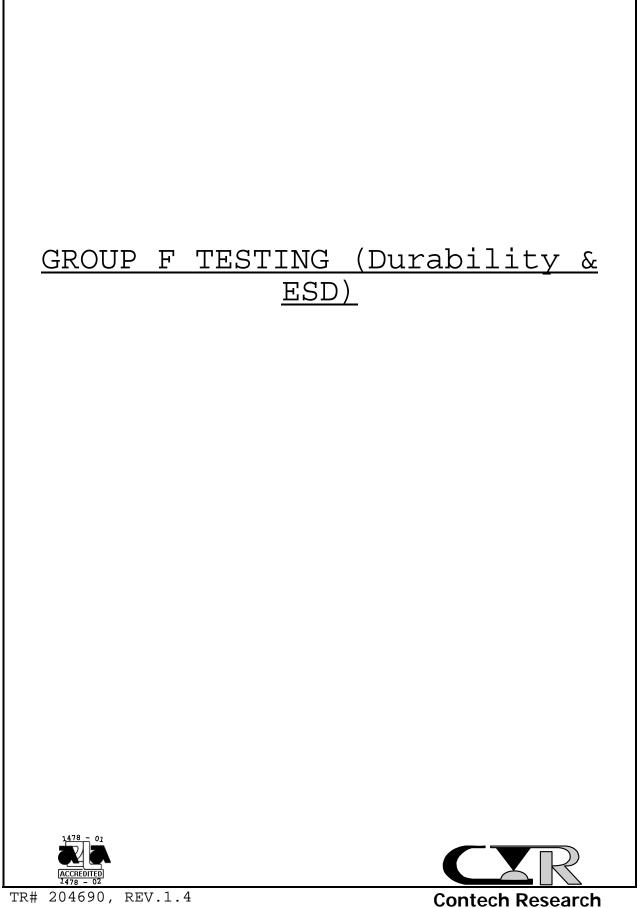
PROJECT NO.: 204690	SPECIFICATION: VITA 46
PART NO.: 030	PART DESCRIPTION: connector
SAMPLE SIZE: 1	TECHNICIAN: MAG
START DATE: 1-26-05	COMPLETE DATE: 2-8-05
ROOM AMBIENT: 24 °C	RELATIVE HUMIDITY: 18 %
EQUIPMENT ID#: 321	
DIELECTRIC WITHSTANDING VOLTAGE	
PURPOSE:	
To determine if the connectors integrity after being stressed environmental conditioning.	
PROCEDURE:	
1. The test was performed in acc Method 3001.	cordance with MIL-STD-1344,
2. Test Conditions:	
Between Adjacent Contacts (c Between Rows Between Contacts and Hardwar Between Contacts and Shell Mated Condition Mounting Condition Hold Time Rate of Application Test Voltage	: No
REQUIREMENTS:	
 When the specified test volt no evidence of breakdown, ar 	age is applied, there shall be cing, etc.
2. The leakage current shall no	ot exceed 5 ma.
TD# 204690 DEV 1 4	
2. The leakage current shall no	-

97 of 122

Contech Research

- 1. The test sample as tested met the requirements as specified.
- 2. The following is a summary of the observed data.


Sample ID	SN 030	SN 030	SN 030	Sample ID	SN 030	SN 030	SN 030
Jl al-bl	Pass	Pass	Pass	J6 al-bl	Pass	Pass	Pass
Jl el-fl	Pass	Pass	Pass	J6 el-fl	Pass	Pass	Pass
J1 c2-d2	Pass	Pass	Pass	J6 c2-d2	Pass	Pass	Pass
J1 g2-h2	Pass	Pass	Pass	J6 g2-h2	Pass	Pass	Pass
J1 c8-d8	Pass	Pass	Pass	J6 c8-d8	Pass	Pass	Pass
J1 g8-h8	Pass	Pass	Pass	J6 g8-h8	Pass	Pass	Pass
J1 a9-b9	Pass	Pass	Pass	J6 a9-b9	Pass	Pass	Pass
J1 e9-f9	Pass	Pass	Pass	J6 e9-f9	Pass	Pass	Pass



PROJECT NO.: 204690 SPECIFICATION: VITA 46 PART NO.: 030 PART DESCRIPTION: Connector SAMPLE SIZE: 1 TECHNICIAN: MAG START DATE: 2-3-05 COMPLETE DATE: 2-5-05 ROOM AMBIENT: 24 °C RELATIVE HUMIDITY: 20 % _____ EQUIPMENT ID#: 403, 26 DUST EXPOSURE PURPOSE: To simulate applications where components may be exposed for extended periods of time and are susceptible to exposure to a dust environment. To determine the impact of residual dust on the electrical stability of the contact system. **PROCEDURE:** 1. The connectors were exposed in a mated condition. 2. Test Conditions(ref. MIL-STD-810F, Method 510.4 Procedure I): Size of Chamber : 2.48 cu. ft. Amount of Dust : 9 gram/ft³ Time of Exposure : 90 minutes - 2 exposures Dust : Talcum Particle Size : N/A : 350 cfm Velocity ------**REOUIREMENTS:** 1. The post test LLCR resistance and DWV shall be measured and recorded. 2. There shall be no evidence of physical damage to the test sample as exposed. _____ DUST RESULTS: There was no evidence of physical damage to the test sample as exposed. Also see LLCR and DWV results above (passed). ACCREDITED TR# 204690, REV.1.4 **Contech Research**

PROJECT NO.: 204690 SPECIFICATION: VITA 46 PART NO.: 030 PART DESCRIPTION: Connector SAMPLE SIZE: 1 TECHNICIAN: MAG START DATE: 2-7-05 COMPLETE DATE: 2-8-05 ROOM AMBIENT: 24 °C RELATIVE HUMIDITY: 20 % _____ EQUIPMENT ID#: 339, 26 SAND EXPOSURE PURPOSE: To simulate applications where components may be exposed for extended periods of time and are susceptible to exposure to a dust environment. To determine the impact of residual dust on the electrical stability of the contact system. **PROCEDURE:** 1. The connectors were exposed in a mated condition. 2. Test Conditions(ref. MIL-STD-810F, Method 510.4 Procedure II): Size of Chamber : 2.48 cu. ft. Amount of Dust : 9 gram/ft³ Time of Exposure : 90 minutes - 2 exposures Particles : 140 Mesh Silica Velocity : 350 cfm **REOUIREMENTS:** 1. The post test LLCR resistance and DWV shall be measured and recorded. 2. There shall be no evidence of physical damage to the test sample as exposed. _____ SAND RESULTS: There was no evidence of physical damage to the test sample as exposed (see Fig. 40). Also see LLCR and DWV results above (passed). TR# 204690, REV.1.4 **Contech Research**

PROJECT NO.: 204690	SPECIFICATION: VITA 46
PART NO.: 017	PART DESCRIPTION: connector
SAMPLE SIZE: 1	TECHNICIAN: MAG
START DATE: 1-26-05	COMPLETE DATE: 2-25-05
ROOM AMBIENT: 24 °C	
EQUIPMENT ID#: 677, 476, 673,	
LOW LEVEL CIRCUIT RESISTANCE (LLC	<u>CR)</u>
PURPOSE:	
To evaluate contact resistance cl systems under conditions where ap not alter the physical contact in and films that degrade electrical sensitive to and may detect the p induced by mechanical or thermal significant loss of contact press	oplied voltages and currents do nterface and will detect oxides l stability. It is also presence of fretting corrosion environments as well as any
PROCEDURE:	
The test was performed in accordathe following conditions:	ance with EIA 364, TP 23 with
Test Current : Open Circuit Voltage : No. of Positions Tested :	20mv
REQUIREMENTS:	
Low level circuit resistance shall prior to and after each environme	
RESULTS:	
The LLCR data follows:	
1478 - 01 ACCREDITED 1478 - 02	
TR# 204690, REV.1.4	Contech Research

Т

103 of 122

			Delta	values			
			units: m	illiohms			
Temp ⁰C	24	24	23				
R.H. %	18	23	20				
Date:	26Jan05	23Feb05	25Feb05				
Pos. ID	Initial	Durability	Durability	Pos. ID	Initial	Durability	Durability
		200x	300x	36	30.074	-2.197	-2.191
1	29.9	-2.1	-2.2	37	33.5	-0.9	-0.9
2	31.0	-1.2	-1.3	38	23.9	-1.1	-1.2
3	23.6	-1.0	-1.0	39	34.9	-0.8	-0.8
4	27.8	-1.2	-1.3	40	27.1	-1.0	-0.9
5	30.4	-0.6	-0.6	41	33.4	-0.7	-0.5
6	26.4	-1.4	-1.3	42	28.2	-1.0	-0.8
7	32.1	-1.0	-0.9	43	33.2	-0.7	-0.6
8	23.9	-1.2	-1.1	44	30.2	-1.0	-1.0
9	33.8	-0.5	-0.5	45	33.7	-0.7	-0.9
10	27.4	-0.9	-1.0	46	29.0	-0.3	-0.4
11	33.6	-0.6	-0.6	47	33.9	-0.3	-0.3
12	29.4	-1.2	-1.2	48	33.0	-0.8	-0.6
13	33.9	-0.7	-0.6	49	34.3	-0.2	-0.3
14	28.5	-0.7	-0.6	50	38.4	-0.9	-1.3
15	34.3	-0.5	-0.3	51	29.7	-0.2	-0.5
16	33.8	-0.6	-1.0	52	37.3	-0.8	-0.7
17	35.0	-0.5	-0.6	53	30.0	-0.3	-0.5
18	38.8	-0.7	-1.0	54	38.4	-0.9	-1.0
19	29.1	-0.5	-0.5	55	29.9	-0.9	-0.8
20	38.0	0.0	-0.7	56	36.9	-0.7	-0.7
21	29.8	-0.9	-1.0	57	27.1	-0.6	-0.6
22	38.6	-0.6	-0.5	58	31.4	-0.3	-0.4
23	29.2	-0.8	-0.8	59	24.3	-0.5	-0.7
24	37.4	-0.5	-0.7	60	33.3	-0.5	-0.3
25	23.5	-0.1	-0.3	61	27.8	-0.5	-0.6
26	35.2	-0.8	-1.1	62	24.6	-0.6	-0.8
27	26.0	-0.4	-0.8	63	33.8	-0.8	-0.5
28	31.5	-0.5	-0.6	64	28.1	-0.3	-0.7
29	27.8	-0.6	-0.9				
30	26.0	-0.7	-0.5	MAX	38.8	0.0	-0.3
31	31.9	-0.8	-0.5	MIN	23.5	-2.2	-2.2
32	29.1	-0.5	-0.6	AVG	31.0	-0.8	-0.8
33	28.8	-1.4	-1.4	STD	4.1	0.4	0.4
34	33.4	-0.7	-0.7	Open	0.0	0.0	0.0
35	26.4	-1.0	-1.1				

			Safety	Ground		
Product: Description:	SN 017	odule Qual			File #:	Safety Gnd
Open circuit		20mv			Current:	100ma
				values illiohms		
Temp ⁰C	24	24	23			
R.H. %	18	23	20			
Date:	26Jan05	23Feb05	25Feb05			
Pos. ID	Initial	Durability	Durability			
		200x	300x			
1	0.47	-0.04	-0.05			
2	0.23	0.01	0.00			
3	0.23	0.02	0.11			
MAX	0.5	0.02	0.11			
MIN	0.2	-0.04	-0.05			
AVG	0.3	-0.01	0.02			
STD	0.1	0.03	0.08			
Open	0	0	0			

PART DESCRIPTION: connector TECHNICIAN: MAG
TECHNICIAN: MAG
COMPLETE DATE: 2-25-05
RELATIVE HUMIDITY: 23 %
(SEA LEVEL)
aintain their dielectric by exposure to mechanical and
ordance with MIL-STD-1344,
osest spacing) : Yes : No : No : Mounted : Mounted : 60 sec. : 500 volts/sec. : 500
ge is applied, there shall be ing, etc.
exceed 5 ma.
Contech Research

106 of 122

Г

Contech Research

- 1. The test sample as tested met the requirements as specified.
- 2. The following is a summary of the observed data.

Sample ID	SN 017	SN 017	SN 017	Sample ID	SN 017	SN 017	SN 017
J1 a1-b1	Pass	Pass	Pass	J6 al-b1	Pass	Pass	Pass
J1 e1-f1	Pass	Pass	Pass	J6 e1-f1	Pass	Pass	Pass
J1 c2-d2	Pass	Pass	Pass	J6 c2-d2	Pass	Pass	Pass
J1 g2-h2	Pass	Pass	Pass	J6 g2-h2	Pass	Pass	Pass
J1 c8-d8	Pass	Pass	Pass	J6 c8-d8	Pass	Pass	Pass
J1 g8-h8	Pass	Pass	Pass	J6 g8-h8	Pass	Pass	Pass
J1 a9-b9	Pass	Pass	Pass	J6 a9-b9	Pass	Pass	Pass
J1 e9-f9	Pass	Pass	Pass	J6 e9-f9	Pass	Pass	Pass

PROJECT NO.: 204690	SPECIFICATION: VITA 46
PART NO.: 017	PART DESCRIPTION: Connector
SAMPLE SIZE: 1	TECHNICIAN: MAG
START DATE: 2-22-05	COMPLETE DATE: 2-25-05
ROOM AMBIENT: 24 °C	RELATIVE HUMIDITY: 22 %
EQUIPMENT ID#: 46	
DURABILITY	
DURBILLI	
PURPOSE:	
To determine the effects of sub predetermined number of mating the expected mechanical life.	
PROCEDURE:	
 The test was performed in ac Procedure 09. 	cordance with EIA 364, Test
2. Test Conditions:	
	0 + 300 with LLCR, DWV, Force, 200 and 500 cycles}
Rate • 500/111 lilax	
REQUIREMENTS:	
1. There shall be no evidence of sample so tested.	physical damage to the test
2. The LLCR and DWV shall be mea	sured and recorded.
DURABILITY RESULTS:	
1478 - 01	
TR# 204690, REV.1.4	Contech Research

108 of 122

 There was no evidence of physical damage to the test samples as tested. Visual Inspection was performed on the daughtercard connector blades by removing them from their housings. Two of the blades are shown below. Wear tracks were evident, but none of the locations showed gold wear-through.

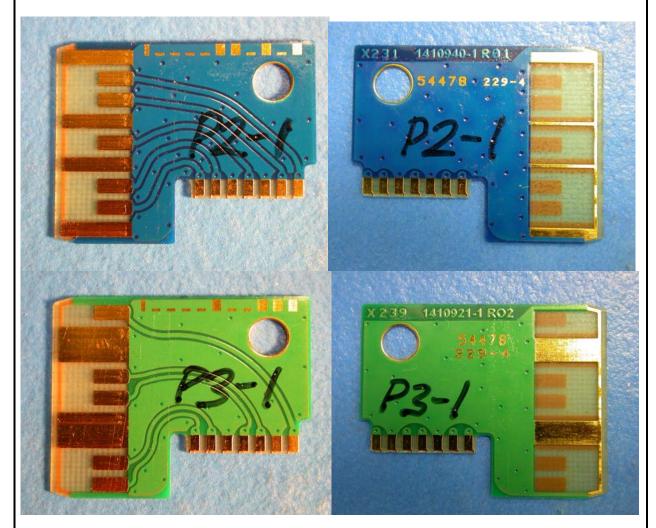


Fig. 41 Connector blades after 500 cycles of durability

2. See the LLCR and DWV section above for the post durability and ESD results (passed).

TR# 204690, REV.1.4

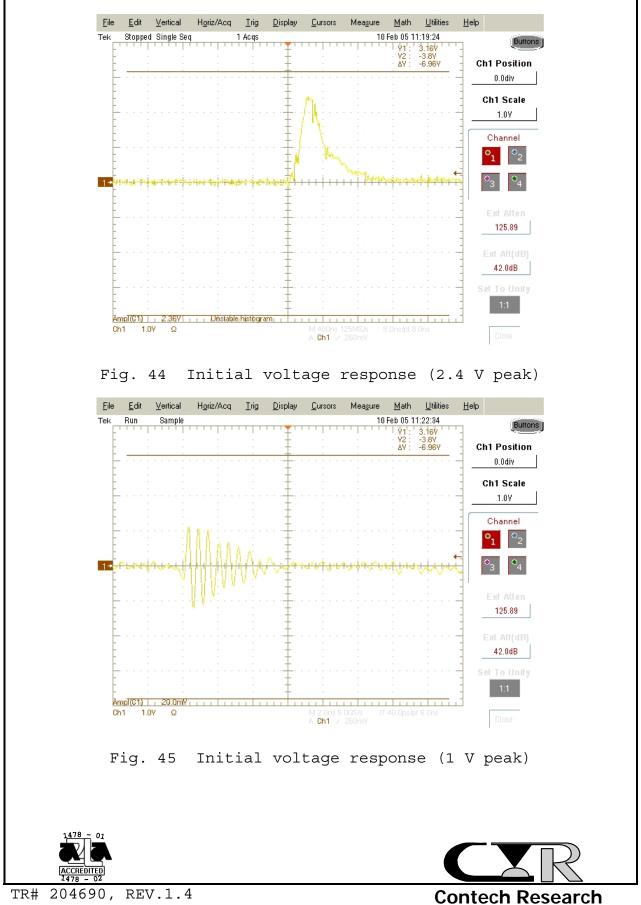
PROJECT 1	NO.:	204690		SPE	CIFICAT	TION:	VITA 46	
PART NO.	: 017			PAR'	I DESCH	RIPTION	Conne	ector
SAMPLE SI	IZE:	1		TEC	HNICIAN	J: MAG		
START DAT	re: 2·	-22-05		COM	PLETE I	DATE:	2-25-0	5
ROOM AMB	IENT:	24 °(<u> </u>	REL	ATIVE H	IUMIDITY	2: 2	22 %
EQUIPMEN	r id#:	46, 48						
MATING AND PURPOSE:) UNMA'							
To determi the connec		e mechan	ical i	forces :	require	ed to ma	ate and	unmate
PROCEDURE :								
The test w 2013.	vas pe:	rformed	in aco	cordance	e with	MIL-STI	D-1344,	Method
REQUIREMEN	ITS:							
The force samples sh	_		_	ed to ma	ate and	l unmate	e the to	est
RESULTS:								
The follow	ving is	s the ob	serve	d data:				
Results:	In	itial	Dur 2	200X	Post 2	2 nd ESD	Dur 30	0X
Sample ID	Mate	Unmate	Mate	Unmat e	Mate	Unmat e	Mate	Unmate
ID 017	76.5	57.2	75.7	54.6	85.1	66.4	96.8	71.1
1478 - 01								

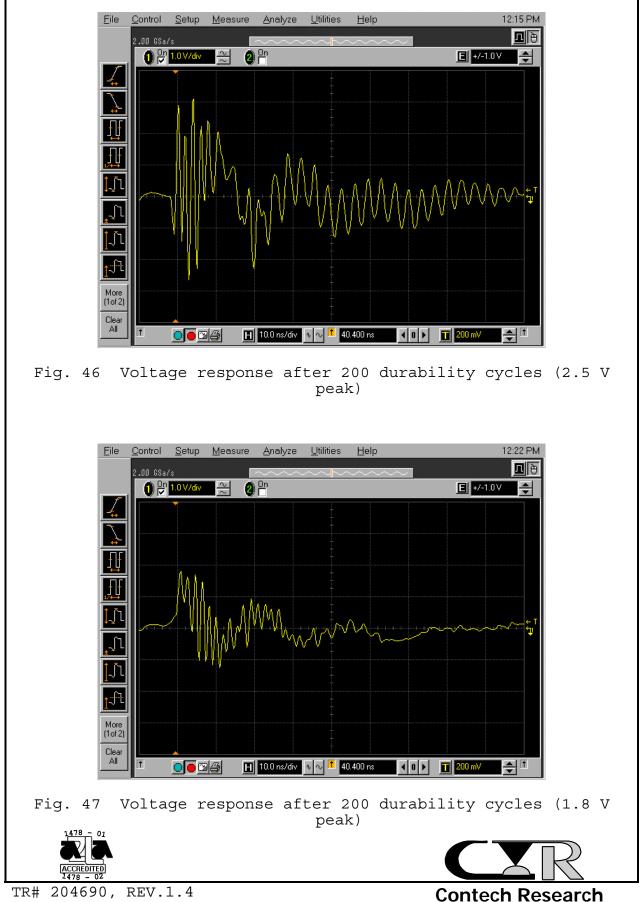
TR# 204690, REV.1.4

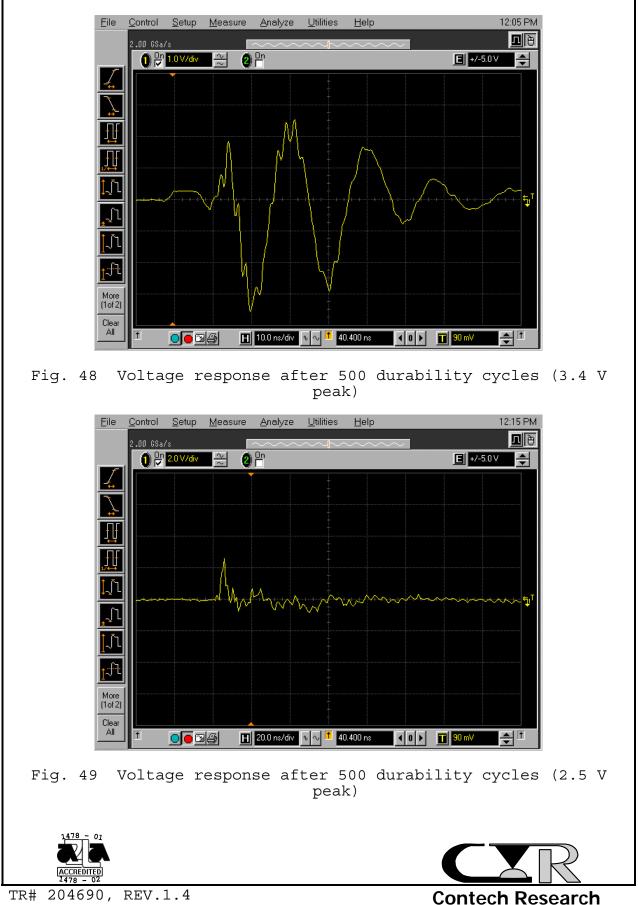
PROJECT NO.: 204690 SPECIFICATION: EN 61000-4-2 PART NO.: 017 PART DESCRIPTION: Connector -----SAMPLE SIZE: 1 TECHNICIAN: OG/GGO/IS START DATE: 1-25-05 COMPLETE DATE: 2-26-05 ROOM AMBIENT: 22 °C RELATIVE HUMIDITY: 25 % -----EQUIPMENT ID#: see attached ESD **PURPOSE:** To determine if the connector can withstand electrostatic discharge. ------_____ PROCEDURE: One sample shall be tested for ESD protection using EN 61000-4-2. The test shall be performed on the module connector half (non-contact). A 150 picofarad source capacitor, charged to 500 to 15,000 volts, discharged through a 330 ohm resistor shall not result in greater than 20 volts to any contact, measured relative to ground. See Figs. 42 and 43 below for the test set-up. Note that two connector contacts were measured for voltage response from the ESD shock, which was applied directly in their vicinity. _____ _____ **REOUIREMENTS:** The discharge as stated above shall not result in greater than 20 volts to any contact, measured relative to ground. _____ ESD RESULTS: The test sample as tested met the requirements as specified (see Figs. 44 through 49 below). 478 -

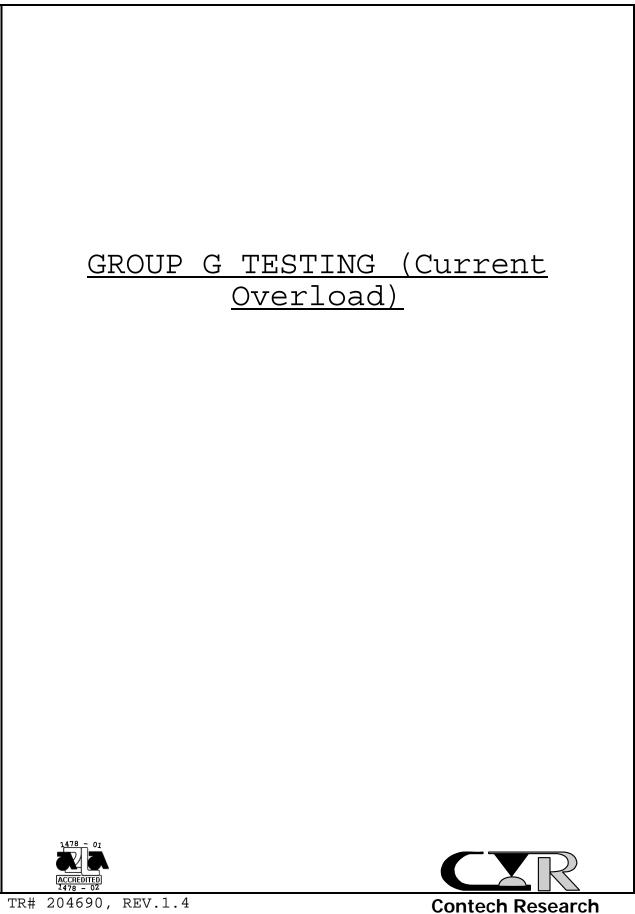
TR# 204690, REV.1.4

Fig. 42 ESD Test module

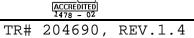



Fig. 43 ESD Test Set-up




TR# 204690, REV.1.4

Contech Research



PROJECT NO.: 204690	SPECIFICATION: VITA 46						
PART NO.: TBD	PART DESCRIPTION: connector						
SAMPLE SIZE: 1	TECHNICIAN: MAG						
START DATE: 2-10-05	COMPLETE DATE: 2-15-05						
ROOM AMBIENT: 23 °C	RELATIVE HUMIDITY: 28 %						
EQUIPMENT ID#: 673, 529							
LOW LEVEL CIRCUIT RESISTANCE (LLO	<u>CR)</u>						
To evaluate contact resistance cl systems under conditions where ap not alter the physical contact in and films that degrade electrical sensitive to and may detect the p induced by mechanical or thermal significant loss of contact press	oplied voltages and currents do nterface and will detect oxides l stability. It is also presence of fretting corrosion environments as well as any						
PROCEDURE:							
The test was performed in accordate the following conditions:	ance with EIA 364, TP 23 with						
Open Circuit Voltage :	10ma 20mv Varied according to blade type						
REQUIREMENTS:							
Low level circuit resistance shall be measured and recorded prior to and after each environment, in this case current overload. Failure is defined as LLCR increase of 25% over initial values.							
RESULTS:							
The LLCR data follows:							
1478 - 01 ACCREDITED 1478 - 02							
TR# 204690, REV.1.4	Contech Research						

Product:	Ground I	Blade		File #:	2046900 9
		Module			5
		20mv		Current:	10ma
			Delta values units: milliohms		
Temp ^o C R.H. % Date: Pos. ID	23 28 10Feb05 Initial	23 30 5 15Feb05 Overloa d			
1 2 3 4					
MAX MIN AVG STD Open		0.2 -2.1 -0.6 1.0 0			
				C	XR
	Descripti on: Open circ voltage: Temp ^o C R.H. % Date: Pos. ID 1 2 3 4 MAX MIN AVG STD Open	Descripti VITA 46 on: Qual Open circuit voltage: Temp ^o C 23 R.H. % 28 Date: 10Feb05 Pos. ID Initial 1 12.6 2 14.2 3 12.5 4 12.6 MAX 14.2 MIN 12.5 AVG 13.0 STD 0.8 Open 0	Open circuit voltage: 20mv Temp °C 23 23 R.H. % 28 30 Date: 10Feb05 15Feb05 Pos. ID Initial Overloa 1 12.6 -0.3 2 14.2 -2.1 3 12.5 -0.1 4 12.6 0.2 MAX 14.2 0.2 MIN 12.5 -2.1 AVG 13.0 -0.6 STD 0.8 1.0 Open 0 0	Descripti VITA 46 Module Open circuit 20mv voltage: Delta values Image: Image: Ima	Descripti VITA 46 Module Open circuit 20mv Current: voltage: Delta values units: milliohms Temp °C 23 23 R.H. % 28 30 Date: 10Feb05 15Feb05 Pos. ID Initial Overloa d 1 12.6 -0.3 2 14.2 -2.1 3 12.5 -0.1 4 12.6 0.2 MAX 14.2 0.2 MIN 12.5 -2.1 AVG 13.0 -0.6 STD 0.8 1.0 Open 0 0

TR# 204690, REV.1.4

Product: Descripti	(Blue)			File #:	2046901 0
on: Open circ	Qual	20mv		Current:	10ma
voltage:					
			Delta values units: milliohms		
Temp ºC R.H. % Date: Pos. ID	23 28 10Feb05 Initial	23 30 5 15Feb05 Overloa d			
1 2 3 4 5	32.9 29.7 26.0 24.6 22.8	0.2 0.6 0.3 -0.1 2.7			
MAX MIN AVG STD Open	32.9 22.8 27.2 4.1 0	2.7 -0.1 0.8 1.1 0			
1478 - 01					

Descripti	VITA 46	Contact (Gr Module	File #:	2046901 1	
on: Open circ voltage:	Qual uit	20mv		Current:	10ma
			Delta values units: milliohms		
Temp ºC R.H. % Date: Pos. ID	23 28 10Feb05 Initial	23 30 15Feb05 Overloa d			
1 2 3 4 5	36.1 33.9 31.7 10.4 13.7				
MAX MIN AVG STD Open	10.4	2.2 -0.7 0.7 1.3 0			

TR# 204690, REV.1.4

PROJECT NO.: 204690 SPECIFICATION: VITA 46 -----PART NO.: TBD PART DESCRIPTION: Connector SAMPLE SIZE: 1 TECHNICIAN: MAG START DATE: 2-14-05 COMPLETE DATE: 2-14-05 ROOM AMBIENT: 23 °C RELATIVE HUMIDITY: 20 % _____ EQUIPMENT ID#: 611 Current Overload PURPOSE: The purpose is to simulate the aging process relative to the stresses induced by overload. _____ **PROCEDURE:** 1. The test was performed in accordance with IEC 60512-3. 2. Test Conditions: Apply a current of 150 % of rated load for 5 minutes, then 125 % for 2 hours on each sample. Power Contact (one contact tested) rated at 8 Amps; test at 12 Amps and 10 Amps Single Contact (5 contacts) rated at 1 Amp; test at 1.5 and 1.25 Amps Double Contact (5 contacts) rated at 1 Amp; test at 1.5 and 1.25 Amps _____ _ _ _ _ **REQUIREMENTS:** LLCR measurements shall be taken at the beginning and at the completion of the test. _ _ _ _ _ _ **RESULTS:** See the LLCR section above for the post test results (passed). 1478 - 01 ACCREDITED

TR# 204690, REV.1.4

CONCLUSIONS

The following conclusions were drawn from the test results:

- The VITA 46 module format with 7-row MultiGig RT-2 connectors is capable of withstanding harsh environments typical of military and aerospace applications.
- The test vehicle was representative of future VITA 46 circuit cards, thus there is confidence that the test results are representative for the environments tested.
- The test vehicle provided substantial performance verification coverage, thus providing confidence in the results.
- The performance verification results portray a robust and dependable connector system, both initially and over the harsh environments tested. For example, the initial LLCR measurements are very consistent, and measurements after environmental exposure did not increase (or decrease) significantly.
- Test configurations should be as representative as possible, e.g. enclosures simulating chassis for salt fog testing.
- The testing documented in this report is not intended to cover all possible environmental tests or combinations of tests. Further testing for program-specific requirements may be required.

